
Kernel Trace Analysis

Hashem Waly and Béchir Ktari

FACULTÉ DES SCIENCES ET DE GÉNIE
Université Laval, Québec, Canada

December 9, 2011
École Polytechnique de Montréal, Canada

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 1 / 47

Introduction

Work since last meeting
Hashem Waly

Complete the coding/documentation of the tool.
Writing thesis and preparing for his defence.
Publishing a paper and presenting the work in the Canadian
Conference on Electrical Engineering (CCEE 2011) [WK11].

Also
New student, Rimeh Zribi, was recruited at the M.Sc. level.
Currently working on a policy-based approach.

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 2 / 47

Motivation

Signature-Based
A new scenario description language.
An Eclipse framework is developed on top of TMF.

Anomaly-Based
Re-use the AFI language for the purpose.
Generate models from the source code of programs.
Detect anomalies between models and the execution of the
programs.

Policy-Based
Define policies for the access of different resources of the system.
Detect sequences of events that violate these policies.

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 3 / 47

Anomaly-Based Detection in LTTng Traces
Hashem Waly.

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 4 / 47

Plan

1 Anomaly-Based detection
Introduction
Implementation
Demo
Conclusion

2 Policy-based techniques
Introduction
Methodology
Proposed model
System architecture
Conclusion

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 5 / 47

Plan

1 Anomaly-Based detection
Introduction
Implementation
Demo
Conclusion

2 Policy-based techniques
Introduction
Methodology
Proposed model
System architecture
Conclusion

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 6 / 47

Anomaly-based

Detecting the deviation of the actual system to a pre-defined model.
1 Learning phase.

Dynamic: Execute multiple times the program and progressively
construct the model.
Hidden Markov Models (HMM) [CC09], Improved (HMM), Gao et al.
approach, etc.
Static: Profit from the availability of the source code to construct the
model by using static analysis.

Both approaches could also be combined by completing the static
model by the program execution.

2 Detection phase.

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 7 / 47

Objectives

Generate behaviour models from the source code of C programs.
Adapt and enrich the syntax of AFI language.
Adapt the detection engine to detect anomalies in the execution of
the programs in the traces.
Integrate the developed work within Eclipse environment.

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 8 / 47

System architecture (old)

TMF Traces Treatment

Pre-Processing

Editor GUI

Pattern specification

Output

Events

IDMEF

scenarios

Detection
Engine

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 9 / 47

System architecture (updated)

xmlxml

TMF Traces Treatment

Pre-Processing

Editor GUI

Model creation

output

Events

Alerts

models

Detection
Engine

Noise Treatment

xml

C programs

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 10 / 47

Plan

1 Anomaly-Based detection
Introduction
Implementation
Demo
Conclusion

2 Policy-based techniques
Introduction
Methodology
Proposed model
System architecture
Conclusion

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 11 / 47

Static Analysis tools

Bug Checking: analyse the code to detect programming
bugs/threats.

CppCheck: Open source C/C++ static analyser (Bounds checking,
memory leaks, resource leaks, etc) [cpp11].
Sparse: Detect coding faults in Linux kernel [spa11].
Coccinelle: Collateral evolution by doing transformations on the
source code based on pre-defined patterns [Coc11].
Coverity: A commercial tool to detect software bugs and
programming errors [Cov11].
CODe ANlysis (CODAN): Eclipse framework to easily ”plugin” end
user checks [Cod11].
CDT: A fully C/C++ Development tooling that parses, compiles,
executes C/C++ code [cdt11].

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 12 / 47

Traces Treatment

xmlxml

TMF Traces Treatment Noise Treatment

xml

LttngSyntheticEvents (pid, ppid, tgid, etc).
Treat traces per event which increased the performance of the
overall system.
Filter non-concerned system-calls (metadata, memory operations,
etc).
The noise is defined as a separate XML files.

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 13 / 47

Models creation

Pre-ProcessingC programs Models

The Eclipse C/C++ Development Tooling (CDT) is be used to read
the C programs.
The Abstract Syntax Tree (AST) from CDT is then parsed by our
tool.
The model encapsulates the function calls.

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 14 / 47

File operation example

#include <s t d i o . h>

i n t main ()
{

FILE ∗ f i l e ;
f i l e = fopen (” f i l e . t x t ” , ” a+ ”) ;
for (i n t i =0; i <10; i ++){

f p r i n t f (f i l e , ”%s\n ” , i) ;
}
f c l o s e (f i l e) ;
return 0;

}

include ” . / f i l e h e a d e r . scn ” ;
model main ()
{

event e1 : fopen ;
repeat (10){

event e2 : f p r i n t f ;
}
event e3 : f c l o s e ;

}

The basic constructs are treated: while/for loops, if/switch case,
function calls, return, variables definitions, functions definitions,
etc.

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 15 / 47

Challenges

Executing the program generates 462 system-calls.

Channel Type # Description

1. FS

exec 1 Executes the program.

open 3 /etc/ld.so.cache,/lib/i386linuxgnu/libc.so.6, file.

close 3 Closing the above files.

read 1 /lib/i386linuxgnu/libc.so.6

2. Kernel

page fault entry/exit 238 Trap functions.

syscall entry/exit 72 Entry/Exit system calls.

timer set 1 Sets a timer for certain time.

kernel.sched try wakeup 3 Scheduler related.

sched schedule 1 Scheduler related.

process exit 1 Exiting the process

send signal 1 Send signal to terminate process.

3. MM page free 140 Freeing a page from memory.

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 16 / 47

Challenges

Executing the program generates 462 system-calls.
The model contains only 3 system calls.
The solution could be:

Filter un-necessary system calls such as: memory operations,
metadata, page faults, etc.
Modelling all behaviours of loading the program, linking with
libraries, process creation/termination.
This process changes from a process to another.
Another solution is highlighting the start/end of the program by
compiling the code using finstrument option.
Inserting them as a templates in the beginning/ending of the model.

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 17 / 47

Updating the old system

The key word model separates models from scenarios.
The syntax/semantic of the language has been updated to deal
with different operators between statements: AND, OR, SEQ and
NOT.
The GUI has been updated to generate models, specify noise,
and insert templates in the models.
The Engine has been updated to compare models in the
execution traces.

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 18 / 47

Plan

1 Anomaly-Based detection
Introduction
Implementation
Demo
Conclusion

2 Policy-based techniques
Introduction
Methodology
Proposed model
System architecture
Conclusion

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 19 / 47

Plan

1 Anomaly-Based detection
Introduction
Implementation
Demo
Conclusion

2 Policy-based techniques
Introduction
Methodology
Proposed model
System architecture
Conclusion

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 20 / 47

Conclusion

We have updated the AFI project to deal with models
creation/comparison.
A lot of challenges are involved in the project.
The model creation should be enhanced to deal with data flow.
The engine should be enhanced to deal with uncertainty.
Precise models lead to better results in detecting anomalies and
enrich the Linux Knowledge Base (LKB).

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 21 / 47

Knowledge-Based Model

Structure knowledge and analysis execution within a computer
through a Linux Knowledge Base (LKB) [Des11].
Enriching the model by combining the 3 major detection
approaches (signature, anomaly-based and signature based).
Combine their strengths to lower the impact of their weaknesses.
The models generated from the static analysis of the code could
be combined by the execution of the programs to enrich the
knowledge base.

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 22 / 47

Discussion

Complete the generated models by treating more C/C++
instructions.
Analyse data by tracking the values of the different variables,
pointers, function pointers, arrays, etc.
For the uncertainty about the values of certain variables, we have
added range of values and ’$’ operator for that purpose.
These variables could be substituted by their actual values from
the dynamic execution of the code.

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 23 / 47

Bibliography I

Yu-Shu Chen and Yi-Ming Chen.
Combining incremental hidden markov model and adaboost algorithm for
anomaly intrusion detection.
In Proceedings of the ACM SIGKDD Workshop on CyberSecurity and
Intelligence Informatics, CSI-KDD ’09, pages 3–9, New York, NY, USA,
2009. ACM.

Cdt, 2011.
http://eclipse.org/cdt/.

Coccinelle, 2011.
http://coccinelle.lip6.fr/.

Codan, 2011.
http://wiki.eclipse.org/CDT/designs/StaticAnalysis.

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 24 / 47

Bibliography II

Coverity, 2011.
http://www.coverity.com/.

Cppcheck, 2011.
http://cppcheck.sourceforge.net/.

Mathieu Desnoyers.
Knowledge base model for the linux kernel.
Technical report, EfficiOS Inc., March 2011.

Sparse, 2011.
http://cppcheck.sourceforge.net/.

Hashem Waly and Béchir Ktari.
A complete framework for kernel trace analysis.
In Canadian Conference on Electrical Engineering (CCEE), May 2011.

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 25 / 47

Thanks

We would like to thank DRDC Valcartier and Ericsson for their
financial support.

1 Mario Couture from DRDC Valcartier.
2 Francois Chouinard, Bernd Hufmann, and Matthew Khouzam from

Ericsson Montréal.
3 Papa Maleye from Laval University.

A big thanks to everyone helped in that project along the past two
and half years.

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 26 / 47

Policy-Based Detection in LTTng Traces
Béchir Ktari

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 27 / 47

Plan

1 Anomaly-Based detection
Introduction
Implementation
Demo
Conclusion

2 Policy-based techniques
Introduction
Methodology
Proposed model
System architecture
Conclusion

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 28 / 47

Motivation

Specify all the suspicious behavior is a far away target.
Exploit the work of Hashem to detect or report new malicious or
suspicious behavior.
Helping the system administrator to specify activities that fit the
security policy.

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 29 / 47

Objectives

Signature based approach
Attacks are identified by a scenario language (pattern) that model
malicious activity.

⇓

Policy based approach
A logical security policy specification : any sequence of actions
(events) that leads to the violation of security policy should been
identified and intercepted.

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 30 / 47

Plan

1 Anomaly-Based detection
Introduction
Implementation
Demo
Conclusion

2 Policy-based techniques
Introduction
Methodology
Proposed model
System architecture
Conclusion

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 31 / 47

Methodology

Using expert systems to capture the logic necessary to identify
the sequences that violate security policy :

• The security policy is characterized by predicates.
• The reasoning performed by a security expert to deduce that there

is a violation is represented by facts and rules.
• A rule can specify multiple new suspicious behaviors.

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 32 / 47

Methodology

Figure: Administrator behavior and system behavior

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 33 / 47

Plan

1 Anomaly-Based detection
Introduction
Implementation
Demo
Conclusion

2 Policy-based techniques
Introduction
Methodology
Proposed model
System architecture
Conclusion

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 34 / 47

Description

Proposed solution: consider actions (events) identified in a trace and
deduce their effects in terms of security.

The events captured in LTTng trace are represented by predicates
after the identification of the effect of each action.
The knowledge base used to identify a security violation is fed by
a set of facts and rules.
The facts and rules are represented by predicates.

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 35 / 47

Characteristics

Fact: specify the effects (semantics) of each action on the system
resources.

~ What can we infer ~

Rule: express logical relation among various events.
event1→ event2

”lead to” relation
event1 may cause event2

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 36 / 47

Plan

1 Anomaly-Based detection
Introduction
Implementation
Demo
Conclusion

2 Policy-based techniques
Introduction
Methodology
Proposed model
System architecture
Conclusion

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 37 / 47

System architecture

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 38 / 47

Work progress

The current work is to model the system for the detection of behavior
that violates the system security. This model indicates:

The identification of the involved entities: resources (files,
directories, memory, process, net, service), actions, events, etc.
Predicates must be defined to represent all This entities.
The identification of rules used by a security expert for reasoning.
The determination of the syntax and semantics used by different
entities.

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 39 / 47

Remark

The policy based detection identifies a set of new behaviors⇒ Reduce
of false negatives

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 40 / 47

Plan

1 Anomaly-Based detection
Introduction
Implementation
Demo
Conclusion

2 Policy-based techniques
Introduction
Methodology
Proposed model
System architecture
Conclusion

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 41 / 47

Conclusion

In the field of kernel tracing, this is a proposed method to detect
new malicious activities.
Using AFI results to improve intrusion detection.
Need the security expert knowledge for building rules.
The implemented plugin could be used independently of AFI
(thanks to the IDMEF interface).

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 42 / 47

Future work

Complete this system modelling.
Implement a plugin that clearly identifies behaviours that violate
security policy.
Enhance the knowledge base of rules in order to detect new
suspicious behaviours.
Possibility of integrating the notion of uncertainty in the modelling
of facts and rules.

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 43 / 47

Questions

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 44 / 47

Example : illegal file access

Rules
1 touch(agent, file)→ file(file) && authorized(agent, file)
2 remove(agent, file)→ !file(file)
3 ln-s(agent, link, file)→ file(file) && linked(link, file)
4 print-process(printer, link, file)→ printed(printer, file) && !queued(link,

printer)
5 get-file(agent, file, printer)→ read-access(agent, file)

→ : ”lead to” relation
&& : AND

! : suppression of the fact from the knowledge base

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 45 / 47

Example : illegal file access

security policy
No read access to a secret file

read-access(agent, secret file) && authorized(agent, secret file)⇒ security
policy violation

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 46 / 47

Example : illegal file access

c©B. Ktari (Université Laval) Kernel trace analysis December 2011 47 / 47

	Anomaly-Based detection
	Introduction
	Implementation
	Demo
	Conclusion

	Policy-based techniques
	Introduction
	Methodology
	Proposed model
	System architecture
	Conclusion

