Distributed traces modeling and
critical path analysis

Progress Report Meeting
December 6" 2012

Francis Giraldeau
francis.giraldeau@polymtl.ca

Under the direction of Michel Dagenais
DORSAL Lab, Ecole Polytechnique de Montréal

Plan
Research objectives

Execution graph recovery
Critical path computation
Future work

Objectives

(11

General objective

Provide trace analysis tools to
understand the overall performance
of a distributed application.

J)

Critical Path Method

* Used in project management (PERT, Gantt)
» Directed Acyclic Graph (DAG) of activities
* The critical path is the longest path in the graph

Detailed objectives

1.Develop instrumentation and semantic to
extract execution graph from kernel trace

2.Extract distributed execution graph online
3.Determine the critical path
4.Calculate resources usage of execution

Black box approach required

Assumption: linux kernel is used

Research questions

11
Is it possible to extract the critical path of a

distributed application from a kernel trace? 37

11
If so, what is the most efficient and reliable

way to perform this analysis online? 5y

Literature review

Observation of distributed systems

Precise Statistical
» Systematic event * Event sampling
processing e Scalable

* Accurate measure » Allow false positive

» Scalability issue
* Subject to event loss

Instrumentation level

Application domain, ~
limited scope
<

Universal, right
semantic
{ Optional]
Unable to relate
packets to
processes

Performance
Monitoring Unit
Very low level

CPU critical path [42]

initial node

call(A)
call(B) Critical Path Profile
Total Length 16
Procedure A 11
startSend tartR
) SIALSIe0Y Procedure C 5
2 0 Legend
0 ——— Useful Time
endSendC') =0yl e Waiting Time
endRecv — — . Critical Path
exit

Microsoft's Magpie [30]

IS worker thread Sync WinSock send
to SQL Server

ghucyivatls
iR

He,
Iraty

picks up reguest
from http.sys \

weB.cec [l I

WEB.388 = — i

HTTP
request Disk
packet T —, ASP.NET worker
from client Met RX thread takes over
Net TX
10.051s
Met TX
Met R
sk SQL thread
soLgca unblocks
10.051s

HephdedBugn
.
HEAR

"
4

5%

OLE padPaod

5

54
E= I

ASP NET thread blocks

during 3 RPCs to database

TDS request and reply

4= packets sent and

| received n |!
v > !
|

|| 10.100s
|
DiskRead | |
ol [0 1]

10,1008

KEY:

Request ccc000b9: /duwamish7/categories.aspx?ID=831

1S worker thread
wakes up to write log

B
& e
o]
i {
it —
|

HTTP response packets
sent back to client

10.155s8

10.155s

Blocked ®WIIS WM ASP.NET EESQL B Disk HEOther

Google's Dapper [21]

PR m Local ppgojute Scaled
: (- Calls 7 lotat 0%lle Histogram Histogram Viow
StartDate: 570672008 (ms) © Contribution (M) “(me)e> (M) O
StatHour 5o © {count) £+
End Data: ES.'M.n'zma AN} 40,900,720 (100.00%) 138,773,132.8 (100.00%) 4,008,118 (100.00%) Ba1 i View
End Hour: [10 & : - :
Clustar Iiw-htﬂl‘- | I E 3,450,680 (B.42%) 39437 3120 (28.22%) 1918437 (46.81%) 1947 L :ﬂm 2
User jusertzz . R 1658880 (405%) 550396864 (40.02%) 1658880 (4048%) 47.21 l View
Job; 2 = T e
Nede Information o Bimplified Call Tree f
™ User Viawing Execution Pattern: E
& RPC or Span Name |- Irortand
" dob —— M M ey
Cluster 3 | aamrch 3159 0000 Ramtme
#0.00 81580 Leamoin
Cost Matric 0 ¢ 4 2140 4030 Emmein
. L.hnwn ,J m - M50 3140 Esampls
© Parent Latency © : ' o T S
™ Raquast Size © thing1 | thing2 | halpari | 280 1140 Esmels |
 Rosponss Sise 0 — 2480 3140 mn.:
 Racursive Siza 0 | rml*m? | R0 2480 Cameie
" Recursive Quaue Tima O P
Bemis 10 1 6ma 20 20 e nme 40ms ABme
- = Inls * v nnEal sel Seslaec Ml | gemons
+ e — b Annoaions ganedil me s e RSO D RN hup
+ |5 —— Il Aoaniets v pahtI S e 10 S e kg
- I — Inlg Asnital Qahs]E mp ot gegmret ¢ pOBAJE WS D SE00WS Puiger]
- lnfe Aanclsians goasll mes asoomd poehll moalascomt heiper?
L | lale Sonclalons goatIl Sag acom ¢ peahdl) ok ladaegi hEipsrd
| — lols Annotaions guabdll mae o peahill mulasgorpr hilperd
+ | Inle Aoncisions gahbl soatascamr * peslll moapsscami Poipar]
+ o — lnly Anneststons gahSI oA ¢ GESIALLTLALAICGI: heper]
+] Inkg Annctsions gahsdEl oo sscomsr -+ passll! s ascoms Ml
+ |1 Inke Annstalons gahslR oo cascemr * paslll TR Assms helper)

MPI1 Jumpshot [22]

BEEE

BH® o ®

€ 2|98 &

Row Court

62

Global Mazx Time Tirme Per Pixal
12.0545410084 0.00022258

“iew Final Time
51835517

5. 03

Focus Time
4.9457317354

Zoom

Wiew Inik Time
4.23680205298

Global Min Time
-0.0010504858

Lowest [Max. Depth 4 [Zoom Level
oj2

TimeLines

330

-

CurmulativeEx...

[]5L0G-2

-

31
2
21
1
11

w

1

_______-' |

.nuﬂ”"l"mﬂuullllllllju. e e __

O AN M =S N WM~ O0OoO ANMS N0~ 00 0 -
L I L B o T e I s B T e e B R B T T T I B B I I B R B I B B B)

s i i [o i i |

4

Fit All Row

W

-

4.50 4.55 .60 4.65 4.70 4.?5 4.80 4.85 4.30 4.35 5.00

4.45

@ world_rank =

-

1

Tirre (seconds)

Summary

* Focused on network

 Unable to recover process relationship
 Requires software adaptation

* Incompatible with black box approach
* Limited scope

 Focused on three-tiers infrastructure

o Specific to application, library or middleware

Methodology

Methodology

Design small programs with known behavior
* Project workload-kit to generate a standard traceset
Run programs while kernel tracing is enabled

Analyze trace manually

* Recover system state

» Correlate events among objects

* Validate assumptions

* Highlight limitations

Modify kernel instrumentation (as modules)

Workload-Kit

» Calibrated CPU hog

* Burst |/O sync/async

« Synchronization (deadlock, pipeline, imbalance)
« TCP/UDP network transmission

Wait analysis

» Types of waiting

* Preempted (ex: quantum exhausted)
* Interrupted (ex: IRQ)
 Blocking (ex: cold read on disk)

* Passive wait mechanism

» Occurs always in system calls

» Different wait state

» \Wait source is on the critical path

Main system calls

System call Control flow effect Wake-up source
nanosleep No change Timer

read Change to device Softirg

write (sync) Change to device Softirg

waitpid Change to local task task

futex Change to local task task

recv Change to network and Softirg

remote task

Bypassing system calls

OMP_WAIT_POLICY=ACTIVE OMP_WAIT_POLICY=PASSIVE

* Spin locks are usually short duration
* Analysis relies on system calls

Futex synchronization

« Stays in userspace if no contention
* Lock held, want lock: FUTEX WAIT
* On unlock, wake pending: FUTEX WAKE

Task 1

mutex locked locked

Task 2

Shared memory

 Communication by shared memory is not
visible from kernel space by default

* Could be instrumented with traps (page fault)
but very costly

Asynchronous system calls

* |[ncrease parallelism
» Still need some synchronization
* Do not affect critical path recovery

Userspace thread

 Appears as a single process
* The system level execution can be recovered
* Require threading library instrumentation

Execution graph recovery

Execution graph semantic

 Directed acyclic graph
» Actor: system object
e Task, mutex, fd, sock, etc.
* Vertex: key execution events
* Fork, wakeup, read, write, etc.
* Per actor edge: actor state
« Wait, busy, running, etc.
» Cross actor edge: links between objects
« Split or merge

Fork/waitpid example

master

child 1
child 2

0

task master

0

task child 1 T

—_—

fal
L4

task child 2

0

Basic graphs

state

@ @

i g
: merge é

Basic graphs

blocking

Actor 1

Actor 2

Basic graph

concatenation
blocking blocking
Actor 1 ’Q_’@_’O

Actor 2

Actor 3 é O

Basic graph
interleaved

blocking blocking
Actor 1

Actor 2

Actor 3 é ><_>

Basic graph
embed

blocking blocking
Actor 1

Actor 2

Actor 3 é ><_>

Basic graph

nhested
blocking
Actor 1
blocking
Actor 2

Actor 3

Basic graph
opened

Actor 1 ’O
Actor 2 ’O
Actor 1 ’O Left part of the

Actor 1 do not wait
on actor 2

graph is missing

Actor 2

-\...-
..-—"

i

1—'5..,,'..?_

Critical path computation

 Backward algorithm

* Simplest method
* Requires full graph in memory
* Not suitable for on-line analysis

* Forward algorithm

* Breadth first search with O(n) complexity
e Closest-first traversal

* Incremental path pruning

» Suitable for on-line analysis

Critical path algorithm

* Closest-first breadth first search iterator
 Annotate each visited edge as candidate

* If blocking (except self-walit) encountered,
annotate edges backward as non-critical path
until reaching a node that has two candidate
edges node with reached

* The result is annotated critical path.

* The critical path may not be unique.

Example of critical path computation

S processes are involved:

*1sh
e 2sh
*3ls
* 4 tail
5 grep

read read waitpid
clone | | clone | | clone walitpid walitpid walitpid

write

O—O

e

Final result

O O—>O—>O—>O0—0

Incl. Self Called Function— 1”‘
BN 100.00 0.01 (0) ® 1281 /bin/bash
[52.30 0.01 18 1282 /bin/bash

W 51.84 0.03 1M 1283 /bin/ls
W 5174 0.04 1M 1284 /bin/tail
W 4473 038 1 m 1285 /bin/grep

Analysis of distributed processes

* |Indirect wake-up from softirq
 Requires additional instrumentation

* inet_sock create
e Inet sock clone > Overrides inet familly

and uses kprobe hook

* inet_sock delete

* inet_sock_local_in > Netfilter hook
* Inet sock local out

Critical path involving network /O

echo “foo” | netcat under Traffic Shaper (slow-motion)

//, T \ //, o \\\\ aCCe pt //,,/ o \\\\ ’//, T \\\\ //, T \\\\ //, T \\\\
Serveur | F —>»{ B | » W» RD » CL —» E | F Fork
.) \ ,,,,,// \\,,,,, 4 1\,,,,, J N - // A - 4 B BIOCk
T T W Wake
RD Read
recv [s] — [A] [PA] — WT Write

; C Connect
Xmit [SA] [[FA] E Exit

[S] SYN
[A] ACK
[P] PSH
. [F] FIN
xmit [S] [A] [PA] [F]

‘ L/
[SA] [FA]

S o select @D AN oll AN A
Client | F —> C »= B —— > W —» WT»CL —» B P i >)
\7/ N

_ N4 N4 N4 4 N4 N4

recv

Future work

* Finish prototype implementation

* Visualization and summary of critical path
 Validation with real workload

* Multi-host analysis

Conclusion

 Research addresses real challenge
 Proposed approach is original
* Preliminary analysis shows the feasibility

Thanks to Professor Michel Dagenais and our partners.

CAE

The National Defense of Canada
Ericsson

Opal-RT

Révolution Linux

References available into the research proposal
document.

Software:
http://secretaire.dorsal.polymtl.ca/~fgiraldeau/workload-kit/
http://secretaire.dorsal.polymtl.ca/~fgiraldeau/traceset/

https://github.com/giraldeau

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63

