

Distributed traces modeling and
critical path analysis

Progress Report Meeting
December 6th 2012

Francis Giraldeau
francis.giraldeau@polymtl.ca

Under the direction of Michel Dagenais
DORSAL Lab, École Polytechnique de Montréal

Plan
● Research objectives
● Execution graph recovery
● Critical path computation
● Future work

Objectives

General objective

Provide trace analysis tools to
understand the overall performance

of a distributed application.

“
”

Critical Path Method

● Used in project management (PERT, Gantt)
● Directed Acyclic Graph (DAG) of activities
● The critical path is the longest path in the graph

Drawing source: wikipedia.org

Detailed objectives

1.Develop instrumentation and semantic to
extract execution graph from kernel trace

2.Extract distributed execution graph online

3.Determine the critical path

4.Calculate resources usage of execution

Black box approach required

Assumption: linux kernel is used

Research questions

Is it possible to extract the critical path of a
distributed application from a kernel trace?

“
”

If so, what is the most efficient and reliable
way to perform this analysis online?

“
”

Literature review

Observation of distributed systems

Precise
● Systematic event

processing
● Accurate measure
● Scalability issue
● Subject to event loss

Statistical
● Event sampling
● Scalable
● Allow false positive

Instrumentation level

Operating system

Hypervisor

Libraries Middleware

Applications

Processor Network

Application domain,
limited scope

Performance
Monitoring Unit
Very low level

Unable to relate
packets to
processes

Optional

Universal, right
semantic

CPU critical path [42]

Microsoft's Magpie [30]

Google's Dapper [21]

MPI Jumpshot [22]

Summary
● Focused on network

● Unable to recover process relationship

● Requires software adaptation
● Incompatible with black box approach

● Limited scope
● Focused on three-tiers infrastructure
● Specific to application, library or middleware

Methodology

Methodology
● Design small programs with known behavior

● Project workload-kit to generate a standard traceset

● Run programs while kernel tracing is enabled
● Analyze trace manually

● Recover system state
● Correlate events among objects
● Validate assumptions
● Highlight limitations

● Modify kernel instrumentation (as modules)

Workload-kit

● Calibrated CPU hog
● Burst I/O sync/async
● Synchronization (deadlock, pipeline, imbalance)
● TCP/UDP network transmission

Wait analysis

● Types of waiting
● Preempted (ex: quantum exhausted)
● Interrupted (ex: IRQ)
● Blocking (ex: cold read on disk)

● Passive wait mechanism
● Occurs always in system calls
● Different wait state
● Wait source is on the critical path

Main system calls

No change

System call Control flow effect Wake-up source

nanosleep Timer
read Change to device Softirq
write (sync) Change to device Softirq
waitpid Change to local task task
futex Change to local task task
recv Change to network and

remote task
Softirq

Bypassing system calls

● Spin locks are usually short duration
● Analysis relies on system calls

OMP_WAIT_POLICY=ACTIVE OMP_WAIT_POLICY=PASSIVE

Futex synchronization

● Stays in userspace if no contention
● Lock held, want lock: FUTEX_WAIT
● On unlock, wake pending: FUTEX_WAKE

futexfutex

lockedlocked lockedlocked

Task 1

mutex

Task 2

Shared memory

● Communication by shared memory is not
visible from kernel space by default

● Could be instrumented with traps (page fault)
but very costly

Asynchronous system calls

● Increase parallelism
● Still need some synchronization
● Do not affect critical path recovery

Userspace thread

● Appears as a single process
● The system level execution can be recovered
● Require threading library instrumentation

Execution graph recovery

● Directed acyclic graph
● Actor: system object

● Task, mutex, fd, sock, etc.

● Vertex: key execution events
● Fork, wakeup, read, write, etc.

● Per actor edge: actor state
● Wait, busy, running, etc.

● Cross actor edge: links between objects
● Split or merge

Execution graph semantic

Fork/waitpid example

Basic graphs

split merge

state

Basic graphs

Actor 1

Actor 2

blocking

Basic graph
concatenation

Actor 1

Actor 2

Actor 3

blocking blocking

Basic graph
interleaved

Actor 1

Actor 2

Actor 3

blocking blocking

Basic graph
embed

Actor 1

Actor 2

Actor 3

blocking blocking

Basic graph
nested

Actor 1

Actor 2

Actor 3

blocking

blocking

Basic graph
opened

Actor 1

Actor 2

Actor 1

Actor 2

Actor 1 do not wait
on actor 2

Left part of the
graph is missing

Critical Path AnalysisCritical Path Analysis

Critical path computation

● Backward algorithm
● Simplest method
● Requires full graph in memory
● Not suitable for on-line analysis

● Forward algorithm
● Breadth first search with O(n) complexity
● Closest-first traversal
● Incremental path pruning
● Suitable for on-line analysis

Critical path algorithm

● Closest-first breadth first search iterator
● Annotate each visited edge as candidate
● If blocking (except self-wait) encountered,

annotate edges backward as non-critical path
until reaching a node that has two candidate
edges node with reached

● The result is annotated critical path.
● The critical path may not be unique.

Example of critical path computation

#!/bin/sh
V=$(ls | tail | grep)

cloneclone readread

waitpidwaitpid waitpidwaitpid waitpidwaitpid

writewrite

readread

readread

writewrite

writewrite

readread

cloneclone cloneclone cloneclone

waitpidwaitpid

5 processes are involved:

● 1 sh
● 2 sh
● 3 ls
● 4 tail
● 5 grep

Final result

1281 /bin/bash
1282 /bin/bash
1283 /bin/ls
1284 /bin/tail
1285 /bin/grep

Analysis of distributed processes

● Indirect wake-up from softirq
● Requires additional instrumentation

● inet_sock_create
● inet_sock_clone
● inet_sock_delete
● inet_sock_local_in
● inet_sock_local_out

Overrides inet familly
and uses kprobe hook

Netfilter hook

Critical path involving network I/O
echo “foo” | netcat under Traffic Shaper (slow-motion)

F

F

[S]

C

[S]

[SA]

[SA]

[A] [PA] [F]

[A] [PA] [F]

[A] [FA]

[A] [FA]

WB
accept

B W
select

B W
poll

EWT CL

RD CL E F Fork
B Block
W Wake
RD Read
WT Write
C Connect
E Exit
[S] SYN
[A] ACK
[P] PSH
[F] FIN

Serveur

Client

recv

xmit

recv

xmit

Future work
● Finish prototype implementation
● Visualization and summary of critical path
● Validation with real workload
● Multi-host analysis

Conclusion

● Research addresses real challenge
● Proposed approach is original
● Preliminary analysis shows the feasibility

Thanks to Professor Michel Dagenais and our partners.

CAE
The National Defense of Canada
Ericsson
Opal-RT
Révolution Linux

References available into the research proposal
document.

Software:

http://secretaire.dorsal.polymtl.ca/~fgiraldeau/workload-kit/

http://secretaire.dorsal.polymtl.ca/~fgiraldeau/traceset/

https://github.com/giraldeau

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63

