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Objectives
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General objective

Provide trace analysis tools to
understand the overall performance
of a distributed application.

J)



Critical Path Method

* Used in project management (PERT, Gantt)
» Directed Acyclic Graph (DAG) of activities
* The critical path is the longest path in the graph




Detailed objectives

1.Develop instrumentation and semantic to
extract execution graph from kernel trace

2.Extract distributed execution graph online
3.Determine the critical path
4.Calculate resources usage of execution

Black box approach required

Assumption: linux kernel is used



Research questions

11
Is it possible to extract the critical path of a

distributed application from a kernel trace? 37

11
If so, what is the most efficient and reliable

way to perform this analysis online? 5y



Literature review




Observation of distributed systems

Precise Statistical
» Systematic event * Event sampling
processing e Scalable

* Accurate measure » Allow false positive

» Scalability issue
* Subject to event loss



Instrumentation level

Application domain, ~
limited scope
<
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Performance
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CPU critical path [42]

initial node

call(A)
call(B) Critical Path Profile
Total Length 16
Procedure A 11
startSend tartR
) SIALSIe0Y Procedure C 5
2 0 Legend
0 ———  Useful Time
endSendC') =0yl e Waiting Time
endRecv — — . Critical Path
exit




Microsoft's Magpie [30]
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Google's Dapper [21]
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MPI1 Jumpshot [22]
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Summary

* Focused on network

 Unable to recover process relationship
 Requires software adaptation

* Incompatible with black box approach
* Limited scope

 Focused on three-tiers infrastructure

o Specific to application, library or middleware



Methodology



Methodology

Design small programs with known behavior
* Project workload-kit to generate a standard traceset
Run programs while kernel tracing is enabled

Analyze trace manually

* Recover system state

» Correlate events among objects

* Validate assumptions

* Highlight limitations

Modify kernel instrumentation (as modules)



Workload-Kit

» Calibrated CPU hog

* Burst |/O sync/async

« Synchronization (deadlock, pipeline, imbalance)
« TCP/UDP network transmission



Wait analysis

» Types of waiting

* Preempted (ex: quantum exhausted)
* Interrupted (ex: IRQ)
 Blocking (ex: cold read on disk)

* Passive wait mechanism

» Occurs always in system calls

» Different wait state

» \Wait source is on the critical path



Main system calls

System call Control flow effect Wake-up source
nanosleep No change Timer

read Change to device Softirg

write (sync) Change to device Softirg

waitpid Change to local task task

futex Change to local task task

recv Change to network and  Softirg

remote task




Bypassing system calls

OMP_WAIT_POLICY=ACTIVE OMP_WAIT_POLICY=PASSIVE

* Spin locks are usually short duration
* Analysis relies on system calls



Futex synchronization

« Stays in userspace if no contention
* Lock held, want lock: FUTEX WAIT
* On unlock, wake pending: FUTEX WAKE

Task 1

mutex locked locked

Task 2



Shared memory

 Communication by shared memory is not
visible from kernel space by default

* Could be instrumented with traps (page fault)
but very costly



Asynchronous system calls

* |[ncrease parallelism
» Still need some synchronization
* Do not affect critical path recovery



Userspace thread

 Appears as a single process
* The system level execution can be recovered
* Require threading library instrumentation



Execution graph recovery



Execution graph semantic

 Directed acyclic graph
» Actor: system object
e Task, mutex, fd, sock, etc.
* Vertex: key execution events
* Fork, wakeup, read, write, etc.
* Per actor edge: actor state
« Wait, busy, running, etc.
» Cross actor edge: links between objects
« Split or merge



Fork/waitpid example
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Basic graphs
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Basic graphs

blocking

Actor 1

Actor 2



Basic graph

concatenation
blocking blocking
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Basic graph
interleaved
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Basic graph
embed
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Basic graph

nhested
blocking
Actor 1
blocking
Actor 2

Actor 3



Basic graph
opened

Actor 1 ’O
Actor 2 ’O
Actor 1 ’O Left part of the

Actor 1 do not wait
on actor 2

graph is missing
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Critical path computation

 Backward algorithm

* Simplest method
* Requires full graph in memory
* Not suitable for on-line analysis

* Forward algorithm

* Breadth first search with O(n) complexity
e Closest-first traversal

* Incremental path pruning

» Suitable for on-line analysis



Critical path algorithm

* Closest-first breadth first search iterator
 Annotate each visited edge as candidate

* If blocking (except self-walit) encountered,
annotate edges backward as non-critical path
until reaching a node that has two candidate
edges node with reached

* The result is annotated critical path.

* The critical path may not be unique.



Example of critical path computation




S processes are involved:

*1sh
e 2sh
*3ls
* 4 tail
5 grep

read read waitpid
clone | | clone | | clone walitpid walitpid walitpid

write
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Final result

O O—>O—>O—>O0—0

Incl. Self Called Function— 1”‘
BN 100.00  0.01 (0) ® 1281 /bin/bash
[ 52.30 0.01 18 1282 /bin/bash

W 51.84 0.03 1M 1283 /bin/ls
W 5174 0.04 1M 1284 /bin/tail
W 4473 038 1 m 1285 /bin/grep



Analysis of distributed processes

* |Indirect wake-up from softirq
 Requires additional instrumentation

* inet_sock create
e Inet sock clone > Overrides inet familly

and uses kprobe hook

* inet_sock delete

* inet_sock_local_in > Netfilter hook
* Inet sock local out




Critical path involving network /O

echo “foo” | netcat under Traffic Shaper (slow-motion)
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Future work

* Finish prototype implementation

* Visualization and summary of critical path
 Validation with real workload

* Multi-host analysis



Conclusion

 Research addresses real challenge
 Proposed approach is original
* Preliminary analysis shows the feasibility
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References available into the research proposal
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Software:
http://secretaire.dorsal.polymtl.ca/~fgiraldeau/workload-kit/
http://secretaire.dorsal.polymtl.ca/~fgiraldeau/traceset/

https://github.com/giraldeau
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