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Introduction

0 Exploration of execution traces can help in a variety of

applications such as:

0 Understanding why an unexpected behavior occurred (design
faults, attacks,...?)

o Understanding how a particular feature is implemented

o Detecting causes of performance bottlenecks

o Comparing traces from multiple versions of the system

o Etc.

o1 Traces, however, tend to be excessively large and hard to

understand.
o Especially low-level, event-based, system call traces!



What is Trace Abstraction?

7 A way to reduce the size of traces by abstracting

out their main content

Two traces may look different but tell the same story
® We are interested in the story and not the details

o The process of extracting high-level concepts from
low-level trace events to facilitate the
understanding and analysis of trace content
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How People Understand System Artifacts?

Three strategies (based on empirical studies):

High-Level High-Level High-Level

Concepts Concepts Concepts
Bottom-up Top-down Opportunistic

Low-Level Low-Level Low-Level

Artifacts Artifacts Artifacts




Trace Analysis: Trace Correlation

01 Automatically comparing traces can help many
applications:

Understanding how a system evolves by comparing
traces of subsequent versions
Comparing traces for system health check

® Important for detecting “zero-day” attacks

m Security and self-healing systems

Very hard to do with low-level, event-based, system call

traces!



Different Levels of Abstraction

C1 C2 Chi Cn

E1 E2 E3 E4 = . E
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Review of Existing Trace Abstraction
Techniques

1 We surveyed several trace analysis techniques and tools in
various areas:

Performance analysis, development and debugging, software
maintenance and program comprehension

1 Examples of tools that have been surveyed:

Low-level trace analysis tools:

m LTTV, Intel VTune, SystemTap, WindRiver Workbench, Zealcore
System Debugger, etc.

High-Level trace analysis tools

m |SVis, Jinsight, Ovation, SEAT, AVID, Scene, Shimba, Program
Explorer, Collaboration Browser, AVID, OSE, TPTP, VET



Key Trace Abstraction Techniques

- Pattern detection
o Filtering of noise
0 Sampling

0 Visualization Techniques



Pattern Detection Techniques

0 A frace pattern is defined as a sequence of events

that occurs repetitively but non-contiguously in
several places in the trace.

1 The more patterns in a trace, the less time is
required to understand its content

We do not need to understand the same sequence
twicel



More about Patterns

0 Instances of the same pattern do not need to be
identical

In fact, exact matching never leads to good
abstraction!

Matching criteria need to be defined to enable
generalization of a trace content

o ldeally, an extracted trace pattern should
correspond to an abstract concept

E.g. a user identifiable computation of some feature



Example of Using Patterns

= |gnore the number of repetitions

= Ignore the order of occurrence

= |dentify “F” as noise

-
N 7’
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Jinsight Pattern View (DePauw et al. 2004 )

Part of IBM Rational® App. Developer for WebSphere® Software.




Pattern Matching Criteria

1 Many pattern matching criteria have been proposed

Most of them can be applied to system call traces
De Pauw et al., Jerding et al., Richner et al., Systa et al, Hamou-
Lhadj and Lethbridge, Bennett et al., etc.
1 Examples:
Ignoring number of repetitions
Ilgnoring the order of occurrences
Treating a sequence of events as a set
Ignoring event information

Measuring the distance between two sequences

Etc.



Pattern Detection in Practice

0 Various matching criteria have been used
successfully in various studies:

Locate places in the system where enhancements are needed
(Jerding et al.)

Helping debugging and fiingx system defects (Systa et al.)
Extracting component collaboration from traces (Richner et al.)

Recovery of high-level diagrams from traces (Hamou-Lhadj and
Lethbridge)

Locating causes of performance bottlenecks (De Pauw et al.)



Detection and Filtering of Noise

o Traces often contain elements (noise) that are not
needed at higher levels of abstraction

7 What can be considered as noise depends on the
objective of the analysis and the type of traces
LTTng traces contain many low-level memory

management events that may not be needed at a high
level

An example of noise in routine call traces are utilities
and implementation details



Techniques for Detecting Noise

1 Detection of noise can be user-guided or based on
any available documentation
0 A heuristic approach can also be used:
Frequency of the events
Order of occurrence

Dependency relationship
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Sampling

0 Sampling is also used to reduce the size of traces
during its generation

0 Several sampling criteria that can be used to
generate small traces (Walker et al., Kuhn et al.)
Time-based sampling
Event-based sampling

Heuristic-based sampling

1 The challenge is to find adequate sampling
parameters



Trace Abstraction Based on
Visualization Techniques

7 Many tools have been developed to help analysts
study execution traces
A set of features that visualize the traces and
enable user interactions

Features categorized into:
= Presentation Features: How trace is displayed?
= Interaction Features: What can the user do with the
system?



Presentation Features

1 Layout: Defining the standard through which a trace is laid out (lines,
points, graphs, etc.)

1 Multiple Linked Views: Providing a number of views that are linked
together

01 Visual Attributes: Using colors and shapes
1 Labels: Labeling events

1 Animation: Supporting animation



Interaction Features

o Selection: Selecting elements to manipulate, filter, or slice
7 Component Navigation: Navigating between components and instances
- Focusing: Providing techniques such as: collapsing, partitioning, etc.

1 Zooming and Scrolling: Enlarging or reducing the size of the event stream,
moving up, down, left or right

7 Querying and Slicing: filtering information, and selecting parts related to the
selected component

o Grouping: Grouping objects, messages, repeated patterns

= Annotating: Describing grouped components, to store user notes while
exploring the diagram

o Highlighting: Highlighting parts of the event sequence
o Hiding: Providing the ability to hide information
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LTTV: Linux Trace Toolkit Viewer

0 LTTV is provided to help studying the trace by visualizing it
and providing a number of views:

The Statistic View displays statistics about the trace, the
events’ types, the processes, and the CPU

The Control Flow View provides an overall view of the trace,
which helps developers to detect patterns that are recognized
as lines with similar lengths and colors

The Detailed Event List View displays the list of events related
to each process, like entry or exit events



LTTV Screenshot
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Intel VTune Performance Analyzer

1 A profiler tool for applications running on intel-based
systems

11 Collects information through sampling and profiling

Sampling is accomplished by interrupting the processor at
regular intervals and collecting samples of instruction
addresses

1 Provides a number of views like process view, thread view,
module view, function view, view by call site and the critical
path view



Intel VTune Performance Analyzer
(cont.)
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Intel VTune (cont.)

1 To deal with size explosion problem:

o Sampling, both time-based sampling and event-based
sampling

o It provides a number of visualization techniques like
scrolling, zooming, highlighting, and filtering (by
process id, CPU number ..etc)
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Wind River Workbench

7 Wind River Linux uses the LTTng framework as a data
provider

o Provides a set of tools and views for software development
and debugging

7 System Viewer displays the trace graphically in three different
ways:
The Event Graph: Displays the succession of events relative
to each thread

The Event Table: Displays events as rows of information
ordered by their time stamp

The Memory usage graph displays memory allocation and
deallocation
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Wind River Workbench (cont.)

1 To deal with size explosion problem:
o Custom filtering is provided
o Highlighting and selection
0 Multiple linked views
0 User-guided filtering



ISVis (Jerding et al. 97)
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SEAT: Software Exploration and Analysis
Tool (Hamou-Lhadj and Lethbridge)
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AVID: Architecture Visualization of
Dynamics in Systems (Walker et al. 2000)
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Limitations of Existing Work

1 Require extensive user involvement

1 Description of high-level concepts is provided by
the users

7 Many don’t scale up

7 Some of them are not applicable to low-level traces
such as system call traces

1 Require fine tuning of parameters and thresholds
(yet to be determined)
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Approach for Abstracting LTTng Traces

Sample LTTng
Traces

Linux Kernel
Documentation

Expert
Knowledge
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Pattern Library

7 We have built a pattern library that contains
patterns that represent key Linux kernel operations

File, socket and process management operations

1 The patterns are modeled as UML state diagrams:

States represent system modes (user_mode, sys_call
mode, eftc.)

Events consist of LTTng events



Patterns we have so far

1 We created patterns for the following operations:

o File Management (Open, Read, Write, Seek, Close)

0 Socket Management for both TCP and UDP (Create, Connect,
Bind, Listen, Accept, Send, Receive, Close)

o Process Management (Execution with exec and execve, Exit, Fork,
Clone)



File Management: Open & Close

Open File Close File

[Within a Process)
syscall_ entry(sys open)

syscall_entry(sys_close)
‘ ‘ close

syscall_exit

syscall_exit




File Management: Read and Write

syscal

Write to File

e

syscall_entry(sys_read)

i

read

|_exit
syscal

I_exit

Read from File

syscall_entry(sys_write)

write




Socket Management (1)

Create Bind Listen

Within a Process

syscall_entry(sys_socketcall)

Within a Process
Within a Process
syscall_entry(sys_socketcall)

syscall_entry(sys_socketcall)
* SOCKet_ca" (ca" ) 4)

socket_call (call = 1) socket_call (call = 2)

* * SOCKet_IiSten
socket_bind
socket_create
syscall_exit

syscall_exit

syscall_exit




ocket Management (2)

Connect Receive
@

Within a Process

2
)
>
Q

Within a Process

Within a Process syscall_entry(sys_socketcall)

syscall_entry(sys_socketcall)
socket_call (call=9 || call=11)

socket_call (call=10 || call=12)

dev_xmit

napi_schedule
socket_connect
* napi_poll

napi_schedule
syscall_exit i i

“ -y

napi_complete

)

timer_set

syscall_entry(sys_socketcall)

t

}

dev_xmit

-

CREPe

napi_poll

=

dev_receive

i)

napi_complete timer_set

it [napi_completed=true]

)

syscall_exit

Cr

f



Process Management

Execution with exec with execve Exit

Within a Process

Within a Process
Within a Process
syscall_entry(sys_exit_group)

exec i i
* “ sched_try_wakeup

sched_schedule

send_signal syscall_exit

sched_try_wakeup

syscall_entry(ptregs_execve)

process_exit

syscall_exit

Cloning

Within a Process

syscall_entry(ptregs_clone)

%

sched_migrate_task

{

process_fork

i

sched_wakeup_new_task

I

syscall_exit

sched_schedule (child process)

syscall_exit



Filtering of Noise

7 We define noise in an LTTng trace as any event associated
with memory management, page faults, and interrupts

O can occur anywhere in the trace and in any order

O are treated similarly to the way utilities have been treated in
related work

1 Associated events are treated as a set

0 i.e. order of occurrence of detailed events is ignored



Validation of the Patterns

7 We worked Pierre-Marc Fournier and Mathieu Desnoyers from
Ecole Polytechnique de Montréal to validate the patterns

O Regular meetings with them have also helped in the process of
understanding the markers used by LTTng

- Both users agreed with the way we defined noise found in
traces

o But further and more formal validation is needed



LTTng Trace Abstraction Tool

7 We have built a prototype tool that takes an LTTng
trace as inputs and return a more abstract trace by

replacing
- Key characteristics of the tool:
Adding new patterns can easily be done

Multiple implementations representing different trace
formats can be applied using the same interfaces

Noise interpreters are marked with the NoiselF
interface

High-level constructs can be hidden or shown easily by
marking-unmarking them



Tracerinfo

DeSign MOdeI reveniName
analyzed by Hpid

FprocessiNamea
Lmoda
d FsyscallMame

dinterfaces
InterpreterF

+ +intarprat{]

uinterfaces
analyzes HighLevelConstructiF
+hide()
+showi)
+isHidden)
+getinfo(}
= HmarkForHics|)
* [runhfarkForHide)

1 I
| | I |
I

Sacketinterpreter | | Processinterpreter

¢

Syntaxinterprater | |Filelnterpreter

Horcelnterprat(} -open() Fereate() -exec) T
Lresd() L bind(} Laxit group() -markedForHide:

HighLevelCreateConstruct | | HighLevelOpenConstruct | | HighLevelClossConstruct




Some Preliminary Experiments

o We generated LTTng traces from small programs

Generated traces for the targeted processes contain
around 1000 events

We were able to reduce the size of these traces to around
35 events

7 We need to work on experimenting with larger traces
(hundred of thousands of events)

From industrial systems with multiple processes
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Conclusion

1 Trace abstraction is needed to make use of
traces in an effective manner

o There are several techniques that have been
proposed:

Pattern detection, filtering of noise, sampling,
visualization

- We proposed a knowledge based approach to
abstract out LTTng traces

A pattern library for main Linux Kernel operations
has been created



Future Directions

o Gontinue developing and validating Linux sys
calls patterns

0 Start experimenting with large traces

1 Completing
A paper that compares trace analysis tools
A paper on abstracting system call trace
= The overall approach

= The pattern library
= Proof of concept



Thank You!
Questions and Discussion
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