Tracing and Monitoring Tools for Distributed Multi-Core
Systems Project

State of the Art Meeting

Trace Abstraction and Correlation Track

Abdelwahab Hamou-Lhadj and Waseem Fadel

Concordia University

{abdelw, w_fadel}@ece.concordia.ca

Ecole Polytechnique, Montreal, QC
December 10th, 2009

.
Agenda

01 Introduction

0 What is and Why Trace Abstraction?

1 Review of Existing Trace Abstraction Techniques
0 Proposed Trace Abstraction Approach

1 Conclusion and Future Direction

.
Agenda

0 Introduction

0 What is and Why Trace Abstraction?

O Review of Existing Trace Abstraction Techniques
O Proposed Trace Abstraction Approach

0 Conclusion and Future Direction

Introduction

0 Exploration of execution traces can help in a variety of

applications such as:

0 Understanding why an unexpected behavior occurred (design
faults, attacks,...?)

o Understanding how a particular feature is implemented

o Detecting causes of performance bottlenecks

o Comparing traces from multiple versions of the system

o Etc.

o1 Traces, however, tend to be excessively large and hard to

understand.
o Especially low-level, event-based, system call traces!

What is Trace Abstraction?

7 A way to reduce the size of traces by abstracting

out their main content

Two traces may look different but tell the same story
® We are interested in the story and not the details

o The process of extracting high-level concepts from
low-level trace events to facilitate the
understanding and analysis of trace content

-7
How People Understand System Artifacts?

Three strategies (based on empirical studies):

High-Level High-Level High-Level

Concepts Concepts Concepts
Bottom-up Top-down Opportunistic

Low-Level Low-Level Low-Level

Artifacts Artifacts Artifacts

Trace Analysis: Trace Correlation

01 Automatically comparing traces can help many
applications:

Understanding how a system evolves by comparing
traces of subsequent versions
Comparing traces for system health check

® Important for detecting “zero-day” attacks

m Security and self-healing systems

Very hard to do with low-level, event-based, system call

traces!

Different Levels of Abstraction

C1 C2 Chi Cn

E1 E2 E3 E4 = . E

.
Agenda

O Introduction and Motivations

0 What is Trace Abstraction?

O Review of Existing Trace Abstraction Techniques
O Proposed Trace Abstraction Approach

0 Conclusion and Future Direction

Review of Existing Trace Abstraction
Techniques

1 We surveyed several trace analysis techniques and tools in
various areas:

Performance analysis, development and debugging, software
maintenance and program comprehension

1 Examples of tools that have been surveyed:

Low-level trace analysis tools:

m LTTV, Intel VTune, SystemTap, WindRiver Workbench, Zealcore
System Debugger, etc.

High-Level trace analysis tools

m |SVis, Jinsight, Ovation, SEAT, AVID, Scene, Shimba, Program
Explorer, Collaboration Browser, AVID, OSE, TPTP, VET

Key Trace Abstraction Techniques

- Pattern detection
o Filtering of noise
0 Sampling

0 Visualization Techniques

Pattern Detection Techniques

0 A frace pattern is defined as a sequence of events

that occurs repetitively but non-contiguously in
several places in the trace.

1 The more patterns in a trace, the less time is
required to understand its content

We do not need to understand the same sequence
twicel

More about Patterns

0 Instances of the same pattern do not need to be
identical

In fact, exact matching never leads to good
abstraction!

Matching criteria need to be defined to enable
generalization of a trace content

o ldeally, an extracted trace pattern should
correspond to an abstract concept

E.g. a user identifiable computation of some feature

Example of Using Patterns

= |gnore the number of repetitions

= Ignore the order of occurrence

= |dentify “F” as noise

-
N 7’

.
Jinsight Pattern View (DePauw et al. 2004)

Part of IBM Rational® App. Developer for WebSphere® Software.

Pattern Matching Criteria

1 Many pattern matching criteria have been proposed

Most of them can be applied to system call traces
De Pauw et al., Jerding et al., Richner et al., Systa et al, Hamou-
Lhadj and Lethbridge, Bennett et al., etc.
1 Examples:
Ignoring number of repetitions
Ilgnoring the order of occurrences
Treating a sequence of events as a set
Ignoring event information

Measuring the distance between two sequences

Etc.

Pattern Detection in Practice

0 Various matching criteria have been used
successfully in various studies:

Locate places in the system where enhancements are needed
(Jerding et al.)

Helping debugging and fiingx system defects (Systa et al.)
Extracting component collaboration from traces (Richner et al.)

Recovery of high-level diagrams from traces (Hamou-Lhadj and
Lethbridge)

Locating causes of performance bottlenecks (De Pauw et al.)

Detection and Filtering of Noise

o Traces often contain elements (noise) that are not
needed at higher levels of abstraction

7 What can be considered as noise depends on the
objective of the analysis and the type of traces
LTTng traces contain many low-level memory

management events that may not be needed at a high
level

An example of noise in routine call traces are utilities
and implementation details

Techniques for Detecting Noise

1 Detection of noise can be user-guided or based on
any available documentation
0 A heuristic approach can also be used:
Frequency of the events
Order of occurrence

Dependency relationship

.
Sampling

0 Sampling is also used to reduce the size of traces
during its generation

0 Several sampling criteria that can be used to
generate small traces (Walker et al., Kuhn et al.)
Time-based sampling
Event-based sampling

Heuristic-based sampling

1 The challenge is to find adequate sampling
parameters

Trace Abstraction Based on
Visualization Techniques

7 Many tools have been developed to help analysts
study execution traces
A set of features that visualize the traces and
enable user interactions

Features categorized into:
= Presentation Features: How trace is displayed?
= Interaction Features: What can the user do with the
system?

Presentation Features

1 Layout: Defining the standard through which a trace is laid out (lines,
points, graphs, etc.)

1 Multiple Linked Views: Providing a number of views that are linked
together

01 Visual Attributes: Using colors and shapes
1 Labels: Labeling events

1 Animation: Supporting animation

Interaction Features

o Selection: Selecting elements to manipulate, filter, or slice
7 Component Navigation: Navigating between components and instances
- Focusing: Providing techniques such as: collapsing, partitioning, etc.

1 Zooming and Scrolling: Enlarging or reducing the size of the event stream,
moving up, down, left or right

7 Querying and Slicing: filtering information, and selecting parts related to the
selected component

o Grouping: Grouping objects, messages, repeated patterns

= Annotating: Describing grouped components, to store user notes while
exploring the diagram

o Highlighting: Highlighting parts of the event sequence
o Hiding: Providing the ability to hide information

.
LTTV: Linux Trace Toolkit Viewer

0 LTTV is provided to help studying the trace by visualizing it
and providing a number of views:

The Statistic View displays statistics about the trace, the
events’ types, the processes, and the CPU

The Control Flow View provides an overall view of the trace,
which helps developers to detect patterns that are recognized
as lines with similar lengths and colors

The Detailed Event List View displays the list of events related
to each process, like entry or exit events

LTTV Screenshot

= i race JoolkIt Viewer:
File wiew Tools Plugins Help
D = ®@e O QAQ « v x| HFHD e > 8
Traceset |
< Traceset statistics Statistic for 'event_types':
P mode_types core_marker_id : 151 E
event_types core_marker_format : 151
= printk : 3
b jtmpjtrace3 wvprintk : 3
process_state : 217
page_alloc : 69954
file_descriptor : 1248
irg_exit : 6516
timer_set : 2574
page_free : 61720
list_module : 87
vm_rmap @ 4675
sched_try wakeup : 19257 =
? Process Brand PID | TGID PPID | CPU! Birth sec| Birth nsec | TRACE L 1004 e i -
{+ swapper (] (4]] 0 0 o o
swapper 4] o o] 1 o] (4] (4]
init . 1 0 0 10032 893634131 0
kthreadd 2 2 4] 4] 1003 893636302 0
migration/0 3 3 2 o 1002 893638243 0
ksoftirqd/o 4 4 2 0 1003 893639882 0
watchdogfo =1 55 2 0 1003 893641724 0
migration/1 (<]] 2 4] 1002 893643502 0
ksoftirgd/1 7 7 2 0 1003 893645337 0 i—|
-
D Trace Tracefile | CPUID | Event Time (s)| Time (ns) PID | Event Description =
jtmpjtrace3 metadata 0 core_marker_id 1003 893133357 0 rnetadata.core_marker_id: 1003.893133357 (/tmpjtrace3/metadata_0), 0, 0, ,, 0, 0x0, MODE_UNKNOWN { chs |
jftmpftrace3 metadata 0 core_marker_format 1003 893136898 O metadata.core_marker_format: 1003.892136999 (ftmp/trace3/metadata_0), 0, 0, , . 0, Ox0, MODE_UNKNOWN
jftmpftrace2 metadata 0 core_marker_id 1003 893139037 0 metadata.core_mmarker_id: 1003.893139037 (jtmp/trace3/metadata_0), 0, 0, ., 0, 0x0, MODE_UNKNOWN { chs
jtmpjtrace3 metadata 0 core_marker format 1003 803140683 O metadata.core_marker_format: 1003.893140683 (ftmp/trace3jmetadata_0), 0, 0, , . 0, Ox0, MODE_UNKNOWMN
jftrmpftrace3 metadata 0 core_marker_id 1003 893142367 0O metadata.core_marker_id: 1003.893142367 (ftmp/trace3/metadata_0), 0, 0, ,, 0, 0x0, MODE_UNKMNOWN { chs
jtmpftrace3 metadata 0 core_marker format 1003 893144130 0 metadata.core_rmarker_format: 1003.893144130 (ftrmp/trace3/metadata_0), 0, 0, , . 0, Ox0, MODE_UNKNOWN
jftrmpftrace3 metadata 0 core_marker_id 1003 893145912 0 metadata.core_rnarker_id: 1003.893145912 (ytmp/trace3/metadata_0), 0, 0, ,, 0, 0x0, MODE_UNKMNOWN { chs
jtrmpftrace3 metadata 0 core_marker format 1003 893147487 O metadata.core_marker format: 1003.893147487 (ftmp/trace3/metadata_0), 0, 0, , ., 0, 0x0, MODE_UNKNOWN
e I o e 1nns OOTIAGNAES N meakndatna cnes menrbar ido 100D 00371 A0NES f#ran FrasaSimentadaka A1 A0 A Aen RAREE IR IR T b
] v

Time Frame start: [1003 |[*|s 872064133 [%|ns end:[1004 [2]|s[872064133 [Z]ns Time interval:[1 [%]s[o [Z|ns Current Time:| 1003 |[*|s|g72064133 |‘|:s
[[»]

Intel VTune Performance Analyzer

1 A profiler tool for applications running on intel-based
systems

11 Collects information through sampling and profiling

Sampling is accomplished by interrupting the processor at
regular intervals and collecting samples of instruction
addresses

1 Provides a number of views like process view, thread view,
module view, function view, view by call site and the critical
path view

Intel VTune Performance Analyzer
(cont.)

STUTGRE(T1A) DeTTormance 1018 = CAll Graph HeOTe [T6CATRDEt] = 11T Jan 28 10105596 2008 =TR[] GoftwaAre Devrlopment 11 = a7 %)
Fla Edit MNawvigate Segrch Project Tuning Bun Window Help
- ¢ Pl BN Q| |@= |l B o 3] =

STESEIN Help = O || Call Graph Results [localhost] - Thu Jan 24 19:05:26 2008 82)

e

diTuning Activities: = prpcess: |fupt.nnl:efMunu}sampl&s;g gaxample/gsexarmple2a; PID: 19457 Siza:3 [T

:;“! first. Hn - Function Cals Self Time Total Time WE;: F WT::' I Class Module Path _:
:Ldm""m“‘ ; ’;‘:“ﬂ; ding GenDenormals 32,031 131792 163,159 o 0 foptintelptunejsamplesigs
its time. _intel_new_proc_init i 1 3 3 0 0 foptiintelptune/samplesigs [T
» Call Graph - __intel_new _proc_imit 2 1] (1] 0 0 Joptfintelptune/samples/gs
Determine program __get_cpu_indicator 1 o a { a joptiintelfitune/samples/as
flow and frﬂi;_-‘;f ':atl __libe_csu_init 1 o o o o Joptiintelptune/samples/gs [~
sequences. Hig (] ; o
overhead ~8X slower,, 7] — == - :
Learn more.., ;ﬂ|£ ST AR !L’E_I B8 Show Top: [50 [_L_li Recalculate |_ Highlight: !r_ﬂar!e”_ _ [=]
p Sampling - [dentify B B =
the elements of code =

that use the most
processor tirma and
configure the

monitoread avents.
AR

Bun. % Na. =0 D
~ wegLampHng Attivit o) Graph call list
= H¥Thujan 17 16

0 Al

M Aun 1 23 = =
v Hpun 1 :
! 12 Thu Jan 17 16:29;32 2008 - Sampling Results [gabpc] 14524 10,084 || O0,08% |
[# Clocktic
[®] Instructi |
= &y callgraph Acthvit |
B call Graph Re | 4] [+]

(&l I n Processes

Intel VTune (cont.)

1 To deal with size explosion problem:

o Sampling, both time-based sampling and event-based
sampling

o It provides a number of visualization techniques like
scrolling, zooming, highlighting, and filtering (by
process id, CPU number ..etc)

.
Wind River Workbench

7 Wind River Linux uses the LTTng framework as a data
provider

o Provides a set of tools and views for software development
and debugging

7 System Viewer displays the trace graphically in three different
ways:
The Event Graph: Displays the succession of events relative
to each thread

The Event Table: Displays events as rows of information
ordered by their time stamp

The Memory usage graph displays memory allocation and
deallocation

e
Wind River Workbench (cont.)

1 To deal with size explosion problem:
o Custom filtering is provided
o Highlighting and selection
0 Multiple linked views
0 User-guided filtering

ISVis (Jerding et al. 97)

View Scenario Actars Interactions

Bctors: Iselactau = Selection mode; [alngla ~

m3 dasign

™ Ahays |Update Mural

Skream Iiag e Annaotations P rokocalh ainag i Gl

lobaHiztory Mosaic Presentationbdana Accesshanager
HTLoad E.‘lll-:u-:umerd

X Cache

HI Loacd
n

Wtility

net_m.-'?i-:sj image

HTF-.I"III}'-D-'.J‘JF:IEDED
HTAnchor] prataco
o

HT&achor_physical
[B
Tanchar _ohyzica
[]
HTLaad HTTF
L
HTDw Connect

HT Farses

HT prograss

'-ITF'a:."seha‘.

HT g rass

HTClear A tivelone

Ma_Ghl_alaar 8o

htmlw

|
WindewHigto; I
I

[|

SEAT: Software Exploration and Analysis
Tool (Hamou-Lhadj and Lethbridge)

E

Edit Mavigate Search Project

Trace Exploration - trace3.ctf - Eclipse Platform

Run Algorithms

Window Help

_18]xi

[S% -+ -2 -|[0e-% 4 » v a

=t Mavigator

BEERD

F- o qn

t- 1z toad

—‘E‘J wieka

{2 weka
.classpath
.projeckt

[Z] tracel.ctf

] tracel-2.ctf
| traceZ.ckf
| traced.ckf
| traced,ckf
| traced-5.ctf
| traceS.ckf
] traces.ctf
] trace7.ctf
] traced.ctf

(o I]

m

[Properties

- X

=3 &

Propert

| Walue -

= Current Mode
1. Method Mame
. Full Sualifled Mamme
. Called By
Calls
. Parent Methiod
. Level
. Trace Line Mo,
8. Source Code Comments
[=] Trace Statistics
1. Total Modes
. Distinck Modes
. Hidden Modes
. Pattern Detected
. Trace Source
. Tace Type
. Tokal Packages
. Total classes

oo R LT

[B IR s Uy R DR I L)

1]

wieka, classifiers, IBk.main
wieka, classiflers, I6k.maln

0 disktinck method(s)

2 distinct method(s): weka.a
wieka, classifiers . IBk.main

1

1

skarking

85406

225

11781

25

trace3.ctf
Undeterrined
Z

1z -
| »

- g bweka, classifiars, 16k, <init> [1]

=- @ weka, classfiers. Evaluation. evaluateModel [1]
: -‘ﬁ$wekﬁ.cnre.Utlls.getOptlnn [=]

= -ﬁ$wekﬁ.cnre.]nstances. <init=[1]
'----‘ﬁ$weka.cnre.Fast'-.-'ector. =it [2]
----ﬂweka.core.Fast'u'ector.addEIement [=]
@ weka, core.FastVector,size [1]

- WPweka.core. Instances. numattributes [1]
@ weka, core. Attribute., <init= [1]
----ﬁwekﬁ.core.Fast\-‘ector.addEIemant [=]
----‘ﬁ$wek,a.core.Fast'-.-’ectDr. <init=[2]
----ﬁwekﬂ.core.Fast\-‘ectDr.addEIement [3]
. @ weka core,Fastyector,size [1]

[+ WPweka, core. Instances. numattribukes [1]
- @ weka, core. Attribute, <init= [1]
----ﬂweka.core.Fast'u'ector.addEIement [=1
----ﬁ$weka.corE.Fast'-.-'ector. <inib=[2]
----ﬂweka.core.Fast'u'ector.addEIement [=]

Exploration O

@ Model (239 occurrences of packagesiclassesimethods: 213 are sho’wn_J ‘26 are hidden)

T 88D v x

Hidden | WEE

| CICCUrrEnce

)

Source Code Comments

wieka.core

wieka, classifiers

wieka, core, Ltils
wieka, core, Fastiveckor
wieka, classifiers Evaluation
wieka, classifiers ., Classifier

wieka, classifiers, [BkgMeighboriode
weka.core Instances
weka.core.Instance

weka,core, atkribute

100000000000
)PP OHEE

weka.core . FastWector$FastvectorEnumerat. .

Package
Package
Class
Class
Class
Class
Class
Class
Class
Class
Class

= |

Class implementing some simple utility methods, 0T
Implements a Fast wectar class without synchronize
Class For evaluating machine learning models, <p:=
Abstract classifier, All schemes For nurneric or nomi -

Class For handling an ordered set of weighted inst:
Class For handling an instance. All values (numeric,

Class for handling an attribuke, Once an attribute [
| |

Conkral Panel | Properties

Madel |Patterns | Sessicn Ukilities | Bookmarks

AVID: Architecture Visualization of
Dynamics in Systems (Walker et al. 2000)

Opboms
ﬂsq:|l’hrj| .’-‘-[up| Shp:a}| Su'mj|
-
Cel#: 13
Stack: Clustering - Rest
Clisstering Clhistering lrmiFain SimFuame
1127 4z47
Ll HEnn
1037 KL
I;I
L] 22 _
Fesi Rest ',
N ModehesAurcESoxc b Pelodles AordSuc by
636 “
1
476 1-
Y 1]
0 .
= L o
:‘-_".
4 L]

Limitations of Existing Work

1 Require extensive user involvement

1 Description of high-level concepts is provided by
the users

7 Many don’t scale up

7 Some of them are not applicable to low-level traces
such as system call traces

1 Require fine tuning of parameters and thresholds
(yet to be determined)

.
Agenda

O Introduction

0 What is and Why Trace Abstraction?

O Review of Existing Trace Abstraction Techniques
0 Proposed Trace Abstraction Approach

0 Conclusion and Future Direction

Approach for Abstracting LTTng Traces

Sample LTTng
Traces

Linux Kernel
Documentation

Expert
Knowledge

-7
Pattern Library

7 We have built a pattern library that contains
patterns that represent key Linux kernel operations

File, socket and process management operations

1 The patterns are modeled as UML state diagrams:

States represent system modes (user_mode, sys_call
mode, eftc.)

Events consist of LTTng events

Patterns we have so far

1 We created patterns for the following operations:

o File Management (Open, Read, Write, Seek, Close)

0 Socket Management for both TCP and UDP (Create, Connect,
Bind, Listen, Accept, Send, Receive, Close)

o Process Management (Execution with exec and execve, Exit, Fork,
Clone)

File Management: Open & Close

Open File Close File

[Within a Process)
syscall_ entry(sys open)

syscall_entry(sys_close)
‘ ‘ close

syscall_exit

syscall_exit

File Management: Read and Write

syscal

Write to File

e

syscall_entry(sys_read)

i

read

|_exit
syscal

I_exit

Read from File

syscall_entry(sys_write)

write

Socket Management (1)

Create Bind Listen

Within a Process

syscall_entry(sys_socketcall)

Within a Process
Within a Process
syscall_entry(sys_socketcall)

syscall_entry(sys_socketcall)
* SOCKet_ca" (ca") 4)

socket_call (call = 1) socket_call (call = 2)

* * SOCKet_IiSten
socket_bind
socket_create
syscall_exit

syscall_exit

syscall_exit

ocket Management (2)

Connect Receive
@

Within a Process

2
)
>
Q

Within a Process

Within a Process syscall_entry(sys_socketcall)

syscall_entry(sys_socketcall)
socket_call (call=9 || call=11)

socket_call (call=10 || call=12)

dev_xmit

napi_schedule
socket_connect
* napi_poll

napi_schedule
syscall_exit i i

“ -y

napi_complete

)

timer_set

syscall_entry(sys_socketcall)

t

}

dev_xmit

-

CREPe

napi_poll

=

dev_receive

i)

napi_complete timer_set

it [napi_completed=true]

)

syscall_exit

Cr

f

Process Management

Execution with exec with execve Exit

Within a Process

Within a Process
Within a Process
syscall_entry(sys_exit_group)

exec i i
* “ sched_try_wakeup

sched_schedule

send_signal syscall_exit

sched_try_wakeup

syscall_entry(ptregs_execve)

process_exit

syscall_exit

Cloning

Within a Process

syscall_entry(ptregs_clone)

%

sched_migrate_task

{

process_fork

i

sched_wakeup_new_task

I

syscall_exit

sched_schedule (child process)

syscall_exit

Filtering of Noise

7 We define noise in an LTTng trace as any event associated
with memory management, page faults, and interrupts

O can occur anywhere in the trace and in any order

O are treated similarly to the way utilities have been treated in
related work

1 Associated events are treated as a set

0 i.e. order of occurrence of detailed events is ignored

Validation of the Patterns

7 We worked Pierre-Marc Fournier and Mathieu Desnoyers from
Ecole Polytechnique de Montréal to validate the patterns

O Regular meetings with them have also helped in the process of
understanding the markers used by LTTng

- Both users agreed with the way we defined noise found in
traces

o But further and more formal validation is needed

LTTng Trace Abstraction Tool

7 We have built a prototype tool that takes an LTTng
trace as inputs and return a more abstract trace by

replacing
- Key characteristics of the tool:
Adding new patterns can easily be done

Multiple implementations representing different trace
formats can be applied using the same interfaces

Noise interpreters are marked with the NoiselF
interface

High-level constructs can be hidden or shown easily by
marking-unmarking them

Tracerinfo

DeSign MOdeI reveniName
analyzed by Hpid

FprocessiNamea
Lmoda
d FsyscallMame

dinterfaces
InterpreterF

+ +intarprat{]

uinterfaces
analyzes HighLevelConstructiF
+hide()
+showi)
+isHidden)
+getinfo(}
= HmarkForHics|)
* [runhfarkForHide)

1 I
| | I |
I

Sacketinterpreter | | Processinterpreter

¢

Syntaxinterprater | |Filelnterpreter

Horcelnterprat(} -open() Fereate() -exec) T
Lresd() L bind(} Laxit group() -markedForHide:

HighLevelCreateConstruct | | HighLevelOpenConstruct | | HighLevelClossConstruct

Some Preliminary Experiments

o We generated LTTng traces from small programs

Generated traces for the targeted processes contain
around 1000 events

We were able to reduce the size of these traces to around
35 events

7 We need to work on experimenting with larger traces
(hundred of thousands of events)

From industrial systems with multiple processes

.
Agenda

O Introduction

0 What is and Why Trace Abstraction?

O Review of Existing Trace Abstraction Techniques
O Proposed Trace Abstraction Approach

0 Conclusion and Future Direction

Conclusion

1 Trace abstraction is needed to make use of
traces in an effective manner

o There are several techniques that have been
proposed:

Pattern detection, filtering of noise, sampling,
visualization

- We proposed a knowledge based approach to
abstract out LTTng traces

A pattern library for main Linux Kernel operations
has been created

Future Directions

o Gontinue developing and validating Linux sys
calls patterns

0 Start experimenting with large traces

1 Completing
A paper that compares trace analysis tools
A paper on abstracting system call trace
= The overall approach

= The pattern library
= Proof of concept

Thank You!
Questions and Discussion

References

o A. Hamou-Lhadj and Timothy Lethbridge. Reasoning about the Concept of Utilities. ECOOP PPPL,
Oslo, Norway, June 14, 2004

o A. Hamou-Lhadj and Timothy Lethbridge. Compression Techniques to Simplify the Analysis of Large
Execution Traces. In Proc. of the 10th International Workshop on Program Comprehension (IWPC),
pages 159-168, Paris, France, 2002

o A. Hamou-Lhadj and Timothy Lethbridge. Measuring Various Properties of Execution Traces to Help
Build Better Trace Analysis Tools. In Proc. of the 10th International Conference on Engineering of
Complex Computer Systems, IEEE Computer Society, pages 559-568, 2005

o Adrian Kuhn and Orla Greevy. Exploiting the Analogy between Traces and Signal Processing. In Proc.
of IEEE International Confernce on Software Maintainance (ICSM 2006). IEEE Computer Society
Press: Los Alamitos CA, 2006

o Andrew Chan, Reid Holmes, Gail C. Murphy and Annie T.T. Ying. Scaling an Object-oriented System
Execution Visualizer through Sampling. In Proc. of the 11th IEEE International Workshop on Program
Comprehension (IWPC’03), 2003

o A. Hamou-Lhadj and Timothy Lethbridge. Summarizing the Content of Large Traces to Facilitate the
Understanding of the Behaviour of a Software System. In Proc. 14th Int. Conf. on Program
Comprehension (ICPC), pages 181-190. IEEE, 2006

o Bas Cornelissen, Leon Moonen, and Andy Zaidman. An Assessment Methodology for Trace Reduction
Techniques

References (cont.)

o Robert J.Walker, Gail C. Murphy, Bjorn Freeman-Benson, DarinWright, Darin Swanson, and Jeremy
Isaak. Visualizing Dynamic Software System Information through High-level Models. In Proc. of the
Conference on Object-Oriented Programing, Systems, Languages, and Applications (Vancouver, British
Columbia, Canada; 18—22 October 1998), ACM SIGPLAN, pp. 271-283, 1998. Published as ACM
SIGPLAN Notices, 33(10), October 1998

o A. Hamou-Lhadj and Timothy Lethbridge. An Efficient Algorithm for Detectin? Patterns in Traces of
Procedure Calls. In Proc. of the 1st International Workshop on Dynamic Analysis (WODA), May 2003

o A. Hamou-Lhadj and Timothy Lethbridge. Techniques for Reducing the Complexity of Object-Oriented
Execution Traces. In Proc. of VISSOFT, 2003, pp. 35-40

o A. Hamou-Lhadj and Timothy Lethbridge. A Survey of Trace Exploration Tools and Techniques. In Proc.
of IBM Centers for Advanced Studies Conferences (CASON 2004). IBM Press: Indianapolis IN, 2004;
42-55

o A. Hamou-Lhadj. Techniques to Simplify the Analysis of Execution Traces for Program Comprehension.
PhD Thesis, Ottawa-Carleton Institute for Computer Science, School of Information Technology and
Engineering, University of Ottawa, Ottawa, Ontario, Canada

n Dean Jerding and Spencer Rugaber. Using Visualization for Architectural Localization and Extraction. In
Proc. of the 4" Working Conference on Reverse Engineering, October 1997, the Netherlands, IEEE
Computer Society, pp. 56-65

References (cont.)

o A. Hamou-Lhad]. Techniques to Simplify the Analysis of Execution Traces for Program Comprehension.
PhD Thesis, Ottawa-Carleton Institute for Computer Science, School of Information Technology and
Engineering, University of Ottawa, Ottawa, Ontario, Canada

o A. Hamou-Lhadj, Edna Braun, Daniel Amyot, and Timothy Lethbridge. Recovering Behavioral Design
Models from Execution Traces. In Proc. of the 91" European Conference on Software Maintenance and
Reengineering (CSMR’05) 2005

o Wim De Pauw, David Lorenz, John Vlissides, and MarkWegman. Execution Patterns in Object-Oriented
Visualization. In Proc. of the 4th USENIX Conference on Object-Oriented Technologies and Systems,
pp. 219-234, 1998

o Tarja Systa. Understanding the Behavior of Java Programs. In Proc. of the 7t Working Conference on
Reverse Engineering, Australia, Brisbane, 2000, pp. 214-223

o Kai Koskimies and Hanspeter Méssenbdck. Scene: Using Scenario Diagrams and Active Text for
lllustrating Object-Oriented Programs. In Proc. of ICSE-18, pages 366 375. IEEE, Mar. 1996

o Tamar Richner and St’ephane Ducasse. Using Dynamic Information for the lterative Recovery of
Collaborations and Roles. In Proc. of the 18t International Conference on Software Maintenance
(ICSM), pages 34-43, Montréal, QC, 2002

o Abdelwahab Hamou-Lhadj, Timothy C. Lethbrridge, Liané'iang Fu. SEAT: A Usable Trace Analysis Tool.
In Proc. of the 13t International Workshop on Program Comprehension (IWPC’05) 2005

References (cont.)

o C. Bennett, D. Myers, M. A. Storey, D.M. German, D. Ouellet, M. Salois, and P. Charland. A Survey and
Evaluation of Tool Features for Understanding Reverse Engineered Sequence Diagrams. Journal of
Software Maintenance and Evolution: Research and Practice, March 2008

o Eclipse Documentation — Archived Release. Overview of the Java Profiling Tool.

o Eclipse Documentation — Archived Release. Profiling Views.

o Eclipse Documentation — Archived Release. Using the Execution Statistics View.

o Eclipse Documentation — Archived Release. Method Invocation Tab.

o Eclipse Documentation — Archived Release. UML2 Trace Interaction Views.

o Mathieu Desnoyers and Michel R. Dagenais. Tracing for Hardware, Driver, and Binary Reverse
Engineering in Linux. CodeBreakers Journal Vol. 1, No. 2, 2006

