
TRACING
and

MONITORING

Distributed Multi-Core
Systems

Adaptative Fault Probing
Progress Report

September 17, 2009
École Polytechnique, Montreal



Report contents

• Architecture (Michel Dagenais)

• Recent Progress (Mathieu Desnoyers)

• Locking Primitives
• Wait-Free Buffers
• User-space RCU
• Multi-Core Architecture Modeling for Formal 

Verification



3 Tracing and monitoring distributed multi-core systems

Architecture

Michel Dagenais
Project lead and professor



4 Tracing and monitoring distributed multi-core systems

Recent Progress

Mathieu Desnoyers
Ph.D. candidate

LTTng project lead



5 Tracing and monitoring distributed multi-core systems

Synchronization for Fast and 
Reentrant Operating System Kernel 

Tracing
• Synchronization Benchmarks
• Synthetic Trace Clock



6 Tracing and monitoring distributed multi-core systems

Synchronization Benchmarks

• Benchmarks justifying
• Use of RCU for read-side tracer synchronization
• Use of local atomic operations for buffering 

scheme



7 Tracing and monitoring distributed multi-core systems

Synthetic Trace Clock

• Propose an RCU-based synthetic trace clock
• Extend limited cycle counters to 64 bits.



8 Tracing and monitoring distributed multi-core systems

Lockless Multi-Core High-
Throughput Buffering Scheme for 

Kernel Tracing

• Details LTTng wait-free buffering scheme
• Benchmarks



9 Tracing and monitoring distributed multi-core systems

Benchmarks (LTTng probe)



10 Tracing and monitoring distributed multi-core systems

Benchmarks (IRQ off vs Lockless)



11 Tracing and monitoring distributed multi-core systems

Benchmarks (Linux kernel build)



12 Tracing and monitoring distributed multi-core systems

Benchmarks (tbench)



13 Tracing and monitoring distributed multi-core systems

Benchmarks (comparison to 
DTrace)

• Dtrace
• 1.18µs per event when tracing all system calls to a 

buffer

• LTTng
• 0.182µs per event

• Probe speedup: 6.42:1



14 Tracing and monitoring distributed multi-core systems

Scalability

Impact of tracing overhead on local host tbench workload scalability



15 Tracing and monitoring distributed multi-core systems

LTTng Kernel Buffering Scheme

• Low-disturbance
• Real-time behavior (latency)

• Wait-free: Strongest type of non-blocking algorithm 
guarantee.

• CPU time
• Low-overhead (e.g. 119ns/event on Intel Xeon)

• NMI-safe



16 Tracing and monitoring distributed multi-core systems

User-Level Implementations of 
Read-Copy Update

• User-space RCU library
• Signal-based RCU
• Memory-barrier RCU
• QSBR RCU



17 Tracing and monitoring distributed multi-core systems

What is RCU ?

• Method for deferring memory reclamation.
• Permits to perform cheap synchronization 

without mutual exclusion.
• Benefits from allowing data to be in non-

consistent state across processors for a 
bounded amount of time (grace period).



18 Tracing and monitoring distributed multi-core systems

RCU Overview



19 Tracing and monitoring distributed multi-core systems

RCU Results (read-side)

• Linear read-side scalability



20 Tracing and monitoring distributed multi-core systems

RCU results (update-side)

64-core Power5+, 32 reader/32 updater threads



21 Tracing and monitoring distributed multi-core systems

Why Using RCU for Tracing ?

• Very efficient read-side
• Scales linearly as the number of cores increases.
• Very fast. Does not require atomic operations.

• Real-time properties
• Wait-free read-side
• Means: no reader thread can be starved because of 

this synchronization.
• Does not affect real-time behavior of a system.



22 Tracing and monitoring distributed multi-core systems

Multi-Core Systems Modeling for 
Formal Verification of Parallel 

Algorithms
• Address the problem of modeling 

synchronization primitive algorithms targeting 
weakly-ordered multiprocessor and multi-core 
systems.

• Enable formal verification of these models with 
the Spin model-checker.



23 Tracing and monitoring distributed multi-core systems

OoOmem Framework

• Created the OoOmem framework to model 
architectures with:
• shared-memory multiprocessor,
• weak memory-ordering.



24 Tracing and monitoring distributed multi-core systems

OoOisched Framework

• Created the OoOisched framework to model
• compiler-level optimizations,
• pipelined and superscalar architectures,
• out-of-order instruction scheduling.



25 Tracing and monitoring distributed multi-core systems

Models

• Created memory exchange scenarios with 
known behavior to tests the model.

• Created RCU model.
• Verify grace-period guarantee.
• Verify publication guarantee.

• Create altered models for error-injection tests.



26 Tracing and monitoring distributed multi-core systems

Model-Checking

• Model-checking successful
• Fits within available memory and time.
• Detects errors injected.
• Full coverage of the proves:

• Safety
• Per-process progress (absence of starvation)

• Proves that RCU model is wait-free.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

