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Synchronization for Fast and 
Reentrant Operating System Kernel 

Tracing
• Synchronization Benchmarks
• Synthetic Trace Clock
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Synchronization Benchmarks

• Benchmarks justifying
• Use of RCU for read-side tracer synchronization
• Use of local atomic operations for buffering 

scheme
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Synthetic Trace Clock

• Propose an RCU-based synthetic trace clock
• Extend limited cycle counters to 64 bits.
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Lockless Multi-Core High-
Throughput Buffering Scheme for 

Kernel Tracing

• Details LTTng wait-free buffering scheme
• Benchmarks
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Benchmarks (LTTng probe)
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Benchmarks (IRQ off vs Lockless)
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Benchmarks (Linux kernel build)
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Benchmarks (tbench)
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Benchmarks (comparison to 
DTrace)

• Dtrace
• 1.18µs per event when tracing all system calls to a 

buffer

• LTTng
• 0.182µs per event

• Probe speedup: 6.42:1
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Scalability

Impact of tracing overhead on local host tbench workload scalability
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LTTng Kernel Buffering Scheme

• Low-disturbance
• Real-time behavior (latency)

• Wait-free: Strongest type of non-blocking algorithm 
guarantee.

• CPU time
• Low-overhead (e.g. 119ns/event on Intel Xeon)

• NMI-safe
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User-Level Implementations of 
Read-Copy Update

• User-space RCU library
• Signal-based RCU
• Memory-barrier RCU
• QSBR RCU
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What is RCU ?

• Method for deferring memory reclamation.
• Permits to perform cheap synchronization 

without mutual exclusion.
• Benefits from allowing data to be in non-

consistent state across processors for a 
bounded amount of time (grace period).



18 Tracing and monitoring distributed multi-core systems

RCU Overview
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RCU Results (read-side)

• Linear read-side scalability
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RCU results (update-side)

64-core Power5+, 32 reader/32 updater threads
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Why Using RCU for Tracing ?

• Very efficient read-side
• Scales linearly as the number of cores increases.
• Very fast. Does not require atomic operations.

• Real-time properties
• Wait-free read-side
• Means: no reader thread can be starved because of 

this synchronization.
• Does not affect real-time behavior of a system.
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Multi-Core Systems Modeling for 
Formal Verification of Parallel 

Algorithms
• Address the problem of modeling 

synchronization primitive algorithms targeting 
weakly-ordered multiprocessor and multi-core 
systems.

• Enable formal verification of these models with 
the Spin model-checker.



23 Tracing and monitoring distributed multi-core systems

OoOmem Framework

• Created the OoOmem framework to model 
architectures with:
• shared-memory multiprocessor,
• weak memory-ordering.
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OoOisched Framework

• Created the OoOisched framework to model
• compiler-level optimizations,
• pipelined and superscalar architectures,
• out-of-order instruction scheduling.



25 Tracing and monitoring distributed multi-core systems

Models

• Created memory exchange scenarios with 
known behavior to tests the model.

• Created RCU model.
• Verify grace-period guarantee.
• Verify publication guarantee.

• Create altered models for error-injection tests.
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Model-Checking

• Model-checking successful
• Fits within available memory and time.
• Detects errors injected.
• Full coverage of the proves:

• Safety
• Per-process progress (absence of starvation)

• Proves that RCU model is wait-free.
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