
presented by
Mathieu Desnoyers and

Michel Dagenais

École Polytechnique de Montréal
December 10th, 2009

Adaptative Fault Probing

December 10th, 2009 Mathieu Desnoyers 2

> Summary

● Introduction
● State of the art
● Methodology
● Experimental results
● Discussion
● Conclusion

December 10th, 2009 Mathieu Desnoyers 3

> Introduction (1/2)

● Large-scale multiprocessor
● Complexity increase

– Virtual machines, OS, libraries, applications

● Problems harder to investigate
– System-wide

– Occurrence on production systems

– Timing-related

● Need for system-wide analysis tools
– Performance, debugging

December 10th, 2009 Mathieu Desnoyers 4

> Introduction (2/2)

● Tracing
– Trace: sequence of events recorded by a probe

– Purpose: debugging & performance monitoring

– Typically intrusive
● Increasing hardware resources not a solution

● Tracing vs profiling
– Complete sequence of events vs sampling

December 10th, 2009 Mathieu Desnoyers 5

> Objectives (1/2)

● Meet requirements, solve problems identified by
– The industry

– Open source community

● Implement a tracer for Linux
– Mainstream operating system

December 10th, 2009 Mathieu Desnoyers 6

> Objectives (2/2)

● Characteristics of each tracer component
– Scalability

– Low-impact on the operating system throughput

– Low-impact on average latency

● Guarantee a deterministic impact of tracing on
real-time response

● Provide high portability and reentrancy of tracer
mechanisms

December 10th, 2009 Mathieu Desnoyers 7

> State of the Art

● Computer architectures
– Increase in parallelism

– Memory accesses increasingly costly

● Real-time
– VxWorks, RTAI, Linux RT

● Distributed systems
– From message passing (MPI)

– To RPC (map-reduce)

December 10th, 2009 Mathieu Desnoyers 8

> State of the Art (Tracing)

● LTT
● SystemTAP

– Kprobes, Linux Kernel Markers, Tracepoints

● KTAU
● K42
● Dtrace
● Ftrace

– Kprobes, Tracepoints

December 10th, 2009 Mathieu Desnoyers 9

> Methodology

● Interaction with the community
● Tracer design
● Implementation
● Verification

December 10th, 2009 Mathieu Desnoyers 10

> Interaction with the Community

● Industry
– Autodesk, IBM Research, Google

● Open Source Community
● Conferences

– Linux Symposium

– Linux Foundation Collaboration Summit

– Linux Plumbers Conference

– Embedded Linux Conference

– Recon

December 10th, 2009 Mathieu Desnoyers 11

> Tracer Design

Tracing phases properties

December 10th, 2009 Mathieu Desnoyers 12

> Tracer Components Overview

December 10th, 2009 Mathieu Desnoyers 13

> Tracer Probe
 Architecture

Probe data flow
Instrumentation: Kernel Markers,
Tracepoints, Immediate Values.

(Read-Copy Update (RCU))

Tracer control
(RCU)

Trace clock extension
(RCU)

LTTng wait-free buffering
scheme

(local atomic operations)

December 10th, 2009 Mathieu Desnoyers 14

> Implementation

● User-space RCU library (liburcu)
● Static instrumentation

– Tracepoints, Markers, Immediate Values

● LTTng kernel tracer
– Buffering scheme

– Trace clocks

December 10th, 2009 Mathieu Desnoyers 15

> Read-Copy Update (RCU)

December 10th, 2009 Mathieu Desnoyers 16

> User-space RCU

● Goal for user-space tracing
– Highly scalable

– Trace signal handlers

● Need to support being used from tracer library
without modifying the application

● Need for high-performance read-side
– Signal-based memory barriers

– Use thread-local storage

December 10th, 2009 Mathieu Desnoyers 17

> Instrumentation Mechanisms

● Static tracepoints
– Tracepoints, Markers, Trace events

– Optimizations
● Immediate values
● Static jump patching

● Dynamic tracepoints
– Kprobes, GDB tracepoints

December 10th, 2009 Mathieu Desnoyers 18

> Static Tracepoints

● Declared at source-code level, enabled
dynamically

● Easy to manage within distributed source-control
● Easy to use by field engineers
● Based on a branch over a function call
● GCC optimization-friendly

– Guarantee presence of parameters at call site

● Faster than dynamic tracepoints when enabled
● Adding new TP requires to recompile

December 10th, 2009 Mathieu Desnoyers 19

> Immediate Values

● Efficient tracepoint activation
● Encode branch condition in instruction stream
● Low-latency instruction patching

– Based on djprobes work

● Led to gcc “asm goto” (gcc 4.5)

December 10th, 2009 Mathieu Desnoyers 20

> LTTng Buffering Scheme (1/2)

Channel
components

December 10th, 2009 Mathieu Desnoyers 21

> LTTng Buffering Scheme (2/2)

Producer-Consumer
Synchronization

December 10th, 2009 Mathieu Desnoyers 22

> LTTng Trace Clocks

RCU-based
synchronization

December 10th, 2009 Mathieu Desnoyers 23

> Experimental Results

● Benchmarks
● Formal verification

December 10th, 2009 Mathieu Desnoyers 24

> Benchmarks

● Read-Copy Update (user-level)
– Read-side overhead

– Read-side scalability

● LTTng buffering scheme
– Latency

– Throughput

– Scalability

December 10th, 2009 Mathieu Desnoyers 25

> RCU Read-side Overhead

Impact of read-side critical section length, 64 reader threads on POWER5+.
Logarithmic scale.

December 10th, 2009 Mathieu Desnoyers 26

> RCU Read-side Scalability

Read-side scalability for various synchronization primitives, 64-core POWER5+.
Linear scale.

December 10th, 2009 Mathieu Desnoyers 27

> LTTng Latency Impact

Tracer latency overhead for a ping round-trip. Local host, Linux 2.6.30.9, Intel
Xeon 2.0 GHz, 100 000 requests sample, at 2 ms interval. With background
noise.

● Added latency between 328 and 338 ns per
event (95 % confidence interval).

– 666 cycles per event (normal cache behavior)

● Cache-hot micro-benchmarks: 119 ns
– 238 cycles per event (cache hot)

December 10th, 2009 Mathieu Desnoyers 28

> LTTng Latency Impact (cache-hot)

December 10th, 2009 Mathieu Desnoyers 29

> LTTng Throughput Impact (1/4)

December 10th, 2009 Mathieu Desnoyers 30

> LTTng Throughput Impact (2/4)

December 10th, 2009 Mathieu Desnoyers 31

> LTTng Throughput Impact (3/4)

December 10th, 2009 Mathieu Desnoyers 32

> LTTng Throughput Impact (4/4)

December 10th, 2009 Mathieu Desnoyers 33

> LTTng Scalability Impact

Impact of tracing overhead on localhost tbench workload scalability.

December 10th, 2009 Mathieu Desnoyers 34

> Formal Verification

● Model-checking
– SPIN model-checker

● Models
– LTTng buffering scheme

– Read-Copy Update implementations

December 10th, 2009 Mathieu Desnoyers 35

> LTTng Buffering Scheme Model

● Characteristics verified:
– Correctness

● No buffer data corruption

– Real-time impact
● Wait-free (kernel)
● Lock-free (user-space)

– Reentrancy
● Nested NMI-handler progress ensured by wait-

free and lock-free guarantees.

● Model coverage verified with error-injection

December 10th, 2009 Mathieu Desnoyers 36

> RCU Implementations Model

● Out-of-order memory access model
● Weakly-ordered instruction scheduling model
● Model coverage verified with error-injection
● Correctness

– Publication and grace-period guarantees

● Progress verification
– Read-side wait-free

– Write-side is never starved by readers

December 10th, 2009 Mathieu Desnoyers 37

> Discussion

● Tracer properties
● Application domain

December 10th, 2009 Mathieu Desnoyers 38

> Tracer Properties

● Latency
● Throughput
● Scalability
● Real-time
● Portability
● Reentrancy

December 10th, 2009 Mathieu Desnoyers 39

> Application Domain

● Live production commercial servers
– Stability (correctness proofs)

– Require low-overhead tracer

● Soft real-time applications
– Video edition, telecommunication

– Soft real-time, high-throughput

● Real-time distributions
– Wind River Linux, Monta Vista, STLinux

– Require predictable RT impact (wait-free)

December 10th, 2009 Mathieu Desnoyers 40

> Conclusion

● Research
● Original scientific contributions
● Future research perspectives

December 10th, 2009 Mathieu Desnoyers 41

> Research (1/4)

● Brings further
– Lock-less buffering schemes, pioneered by the

K42 tracer (Robert Wisniewski)

– User-level RCU implementations
● Usable in production (Debian, Gentoo)

– Formal verification of parallel algorithms at the
architecture level

December 10th, 2009 Mathieu Desnoyers 42

> Research (2/4)

● Journal articles
– Wiley Software – Practice and Experience

● Synchronization for Fast and Reentrant Operating
System Kernel Tracing

– Recommended for publication

– ACM TOCS
● Lockless Multi-Core High-Throughput Buffering

Scheme for Kernel Tracing

– IEEE TPDS
● User-Level Implementations of Read-Copy Update
● Multi-Core Systems Modeling for Formal Verification

of Parallel Algorithms

December 10th, 2009 Mathieu Desnoyers 43

> Research (3/4)

● Impact (research articles using LTTng)
– Power variations over time in disk operations

– Study which applications are run concurrently
over a long period of time

– Feed information to an anomaly detection
service, part of an operating system

– Hooks to monitor kernel execution inspired from
Tracepoints (Lemona)

December 10th, 2009 Mathieu Desnoyers 44

> Research (4/4)

● Original scientific contribution
– LTTng buffer synchronization algorithm

– Creation of an RCU-based trace clock

– Design of complete kernel tracer
● Wait-free, linearly scalable, NMI-safe algorithms

– Self-modifying code technique to activate
instrumentation

– User-space RCU improvements

– Out-of-order architecture model for formal
verification

December 10th, 2009 Mathieu Desnoyers 45

> Objectives (1/2)

● All tracer properties met
– Latency

– Throughput

– Scalability

– Real-time

– Portability

– Reentrancy

December 10th, 2009 Mathieu Desnoyers 46

> Objectives (2/2)

● Used by the industry
– Google

– IBM

– Ericsson

– Autodesk

– Wind River

– Fujitsu

– Monta Vista

– STMicroelectronic

– C2 Microsystems

– Sony

– Siemens

– Nokia

– Defence Research and
Development Canada.

December 10th, 2009 Mathieu Desnoyers 47

> Future Research Perspectives

● New analysis
– System-wide traces from production systems

– Energy efficiency

– Performance improvements

● Trace time synchronization
– Multi-nodes

– Non-synchronized TSC

● Architectures with non-coherent caches
– Blackfin, Intel 48-core

December 10th, 2009 Mathieu Desnoyers 48

> Questions ?

?
● LTTng project website: http://www.lttng.org

http://www.lttng.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

