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> Summary

* |[ntroduction

e State of the art
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 Experimental results
e Discussion
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> |Introduction (1/2)

» | arge-scale multiprocessor
 Complexity increase

 Problems harder to investigate

* Need for system-wide analysis tools
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> |Introduction (2/2)

e Tracing

 Increasing hardware resources not a solution
* Tracing vs profiling
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> Objectives

* Meet requirements, solve problems identified by

* Implement a tracer for Linux
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> Objectives

. of each tracer component

- Low-impact on the operating system
- Low-impact on average

 Guarantee a deterministic impact of tracing on
response

* Provide high and of tracer
mechanisms
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> State of the Art

 Computer architectures

e Real-time

e Distributed systems
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> State of the Art (Tracing)

o« LTT
e SystemTAP

e« KTAU
e K42
e Dtrace

e Ftrace
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> Methodology

e |[nteraction with the community
* Tracer design

* |[mplementation

* Verification
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> Interaction with the Community

e |[ndustry

 Open Source Community
* Conferences
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> [racer Design
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> Tracer Components Overview
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> Tracer Probe
Architecture

Probe data flow
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> |mplementation

» User-space RCU library (liburcu)
e Static instrumentation

 LTTng kernel tracer
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> Read-Copy Update (RCU)

Pre—existing reads

rcu_read_lock() rcu_read_unlock()
| |
| |
Reader 1 reads :re#ds | reads
L/ |
A Reader 2 read reads '
= Y :
Eﬂ Reader 3 reads :/ reads
= d .
— Reader 4 reads | reads
| |
Updater removal grace period reclamation
Time /% : :
| |
rcu_assign_pointer() / Grace period
synchronize_rcu() waits for completion
of pre—existing reads
Schematic of RCU grace period and read-side critical sections
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> User-space RCU

* Goal for user-space tracing

* Need to support being used from tracer library
without modifying the application

* Need for high-performance read-side
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> |nstrumentation Mechanisms

e Static tracepoints

 Immediate values
 Static jump patching

 Dynamic tracepoints
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> Static Tracepoints

e Declared at source-code level, enabled
dynamically

 Easy to manage within distributed source-control
 Easy to use by field engineers

 Based on a branch over a function call
 GCC optimization-friendly

- Guarantee presence of parameters at call site
 Faster than dynamic tracepoints when enabled

@ °* Adding new TP requires to recompile
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> Immediate Values

e Efficient tracepoint activation
 Encode branch condition in instruction stream
* | ow-latency instruction patching

* | ed to gcc "asm goto” (gcc 4.5)
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> LTTng Buffering Scheme (1/2)
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> LTTng Buffering Scheme (2/2)

Per-CPU buftfer

Timer
Read .y .
mterrupt
T e i
Write count
Read.-” ™. '4R q
R/W ......... ea
Commit count | . ’
Producer 1

r/w | Commit seq
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> LTTng Trace Clocks

MSB @ LSB @

“iipdaté™.. | 0x00000124 | 6x06000020

@ < 3 | 0xA0000000

Cycle counter
RCU-based ® ./

synchronization 406000000

Trace clock update (1, 3, 4) interrupted by a read (2)
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> Experimental Results

e Benchmarks
» Formal verification
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> Benchmarks

 Read-Copy Update (user-level)

L TTng buffering scheme
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> RCU Read-side Overhead
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Impact of read-side critical section length, 64 reader threads on POWERS5+.
Logarithmic scale.
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> RCU Read-side Scalability
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> LTTng Latency Impact

Test Events / | avg. | std.dev.
round-trip | (us) (us)

No tracing — | 40.0 12.8

Flight recorder tracing 27 | 49.0 14.3

Tracer latency overhead for a ping round-trip. Local host, Linux 2.6.30.9, Intel
Xeon 2.0 GHz, 100 000 requests sample, at 2 ms interval. With background
noise.

 Added latency between 328 and 338 ns per
event (95 % confidence interval).

» Cache-hot micro-benchmarks: 119 ns
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> L TTng Latency Impact (cache-hot)

Architecture Cycles | Core freq. | Time
(GHz) (ns)

Intel Pentimm 4 H45 3.0 132
AMD Athlon64 X2 628 2.0 314
Intel Core2 Xeon 238 2.0 119
ARMvT OMAP3 H0T 0.5 1014

Cycles taken to execute a LTTng 0.140 probe, Linux 2.6.30.
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> LTTng Throughput Impact (1/4)

NTREAL

Test Tbench Throughput | Overhead | Trace Throughput
(MB/s) (%) (¥10” events/s)
Mainline Linux kernel 12.45 0 —
Dormant instrumentation 12.56 0 -
Overwrite (flight recorder) 12.49 0 104
Normal tracing to disk 12.44 0 107
tbench client network throughput tracing overhead.
S ECOLE
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> LTTng Throughput Impact (2/4)

Test Tbench Throughput | Overhead | Trace Throughput
(MB/s) (%) (¥10” events/s)
Mainline Linux kernel 2036.4 0 -
Dormant instrumentation 2047.1 -1 —
Overwrite (flight recorder) 1474.0 28 9768
Normal tracing to disk — — —
tbench localhost client /server throughput tracing overhead.
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> LTTng Throughput Impact (3/4)

Test Dbench Throughput | Overhead | Trace Throughput
(MB/s) (%) (*10% events/s)
Mainline Linux kernel 1334.2 0 -
Dormant instrumentation 1373.2 -2 -
Overwrite (flight recorder) 1297.0 3 2840
Non-overwrite tracing to disk 872.0 39 2562
dbench disk write throughput tracing overhead.
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> LTTng Throughput Impact (4/4)

Test Time | Overhead | Trace Throughput

(s) (%) (%¥10° events/s)
Mainline Linux kernel 89 0 -
Dormant instrumentation 84 -1 —
Overwrite (flight recorder) 87 3 822
Normal tracing to disk 90 6 816

Linux kernel compilation tracing overhead.
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> LTTng Scalability Impact
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> Formal Verification

* Model-checking

e Models
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> LTTng Buffering Scheme Model

 Characteristics verified:

* No buffer data corruption

» Wait-free (kernel)
 Lock-free (user-space)

* Nested NMI-handler progress ensured by wait-
free and lock-free guarantees.

 Model coverage verified with error-injection
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> RCU Implementations Model

e Out-of-order memory access model
* \Weakly-ordered instruction scheduling model

 Model coverage verified with error-injection
» Correctness

* Progress verification
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> Discussion

* Tracer properties
* Application domain
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> Tracer Properties

e |atency

e Throughput
e Scalability
 Real-time

* Portability

 Reentrancy
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> Application Domain

* Live production commercial servers

e Soft real-time applications

 Real-time distributions
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> Conclusion

 Research
* Original scientific contributions
* Future research perspectives
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> Research (1/4)

e Brings further

e Usable in production (Debian, Gentoo)
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> Research (2/4)

e Journal articles

« Synchronization for Fast and Reentrant Operating
System Kernel Tracing

- Recommended for publication

 Lockless Multi-Core High-Throughput Buffering
Scheme for Kernel Tracing

» User-Level Implementations of Read-Copy Update

* Multi-Core Systems Modeling for Formal Verification
of Parallel Algorithms
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> Research (3/4)

* |[mpact (research articles using LTTngQ)
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> Research (4/4)

* Original scientific contribution

» Wait-free, linearly scalable, NMI-safe algorithms

PYTECHN!OUE December 10th, 2009 Mathieu Desnoyers 44
MONTREAL



> Objectives (1/2)

» All tracer properties met
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> Objectives (2/2)

 Used by the industry
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> Future Research Perspectives

 New analysis

* Trace time synchronization

 Architectures with non-coherent caches
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> Questions ?

o LT Tng project website: http://www.lttng.org
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