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> Summary

● Introduction
● State of the art
● Methodology
● Experimental results
● Discussion
● Conclusion
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> Introduction (1/2)

● Large-scale multiprocessor
● Complexity increase

– Virtual machines, OS, libraries, applications

● Problems harder to investigate
– System-wide

– Occurrence on production systems

– Timing-related

● Need for system-wide analysis tools
– Performance, debugging
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> Introduction (2/2)

● Tracing
– Trace: sequence of events recorded by a probe

– Purpose: debugging & performance monitoring

– Typically intrusive
● Increasing hardware resources not a solution

● Tracing vs profiling
– Complete sequence of events vs sampling
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> Objectives (1/2)

● Meet requirements, solve problems identified by 
– The industry

– Open source community

● Implement a tracer for Linux
– Mainstream operating system
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> Objectives (2/2)

● Characteristics of each tracer component
– Scalability

– Low-impact on the operating system throughput

– Low-impact on average latency

● Guarantee a deterministic impact of tracing on 
real-time response

● Provide high portability and reentrancy of tracer 
mechanisms
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> State of the Art

● Computer architectures
– Increase in parallelism

– Memory accesses increasingly costly

● Real-time
– VxWorks, RTAI, Linux RT

● Distributed systems
– From message passing (MPI)

– To RPC (map-reduce)
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> State of the Art (Tracing)

● LTT
● SystemTAP

– Kprobes, Linux Kernel Markers, Tracepoints

● KTAU
● K42
● Dtrace
● Ftrace

– Kprobes, Tracepoints
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> Methodology

● Interaction with the community
● Tracer design
● Implementation
● Verification
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> Interaction with the Community

● Industry
– Autodesk, IBM Research, Google

● Open Source Community
● Conferences

– Linux Symposium

– Linux Foundation Collaboration Summit

– Linux Plumbers Conference

– Embedded Linux Conference

– Recon
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> Tracer Design

Tracing phases properties
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> Tracer Components Overview
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> Tracer Probe
   Architecture

Probe data flow
Instrumentation: Kernel Markers, 
Tracepoints, Immediate Values.

(Read-Copy Update (RCU))

Tracer control
(RCU)

Trace clock extension 
(RCU)

LTTng wait-free buffering 
scheme

(local atomic operations)
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> Implementation

● User-space RCU library (liburcu)
● Static instrumentation

– Tracepoints, Markers, Immediate Values

● LTTng kernel tracer
– Buffering scheme

– Trace clocks
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> Read-Copy Update (RCU)
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> User-space RCU

● Goal for user-space tracing
– Highly scalable

– Trace signal handlers

● Need to support being used from tracer library 
without modifying the application

● Need for high-performance read-side
– Signal-based memory barriers

– Use thread-local storage
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> Instrumentation Mechanisms

● Static tracepoints
– Tracepoints, Markers, Trace events

– Optimizations
● Immediate values
● Static jump patching

● Dynamic tracepoints
– Kprobes, GDB tracepoints
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> Static Tracepoints

● Declared at source-code level, enabled 
dynamically

● Easy to manage within distributed source-control
● Easy to use by field engineers
● Based on a branch over a function call
● GCC optimization-friendly

– Guarantee presence of parameters at call site

● Faster than dynamic tracepoints when enabled
● Adding new TP requires to recompile
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> Immediate Values

● Efficient tracepoint activation
● Encode branch condition in instruction stream
● Low-latency instruction patching

– Based on djprobes work

● Led to gcc “asm goto” (gcc 4.5)
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> LTTng Buffering Scheme (1/2)

Channel
components



December 10th, 2009 Mathieu Desnoyers 21

> LTTng Buffering Scheme (2/2)

Producer-Consumer
Synchronization
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> LTTng Trace Clocks

RCU-based 
synchronization



December 10th, 2009 Mathieu Desnoyers 23

> Experimental Results

● Benchmarks
● Formal verification
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> Benchmarks

● Read-Copy Update (user-level)
– Read-side overhead

– Read-side scalability

● LTTng buffering scheme
– Latency

– Throughput

– Scalability
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> RCU Read-side Overhead

Impact of read-side critical section length, 64 reader threads on POWER5+. 
Logarithmic scale.
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> RCU Read-side Scalability

Read-side scalability for various synchronization primitives, 64-core POWER5+.
Linear scale.
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> LTTng Latency Impact

Tracer latency overhead for a ping round-trip. Local host, Linux 2.6.30.9, Intel 
Xeon 2.0 GHz, 100 000 requests sample, at 2 ms interval. With background 
noise.

● Added latency between 328 and 338 ns per 
event (95 % confidence interval).

– 666 cycles per event (normal cache behavior)

● Cache-hot micro-benchmarks: 119 ns
– 238 cycles per event (cache hot)
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> LTTng Latency Impact (cache-hot)
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> LTTng Throughput Impact (1/4)
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> LTTng Throughput Impact (2/4)
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> LTTng Throughput Impact (3/4)
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> LTTng Throughput Impact (4/4)
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> LTTng Scalability Impact

Impact of tracing overhead on localhost tbench workload scalability.



December 10th, 2009 Mathieu Desnoyers 34

> Formal Verification

● Model-checking
– SPIN model-checker

● Models
– LTTng buffering scheme

– Read-Copy Update implementations
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>  LTTng Buffering Scheme Model

● Characteristics verified:
– Correctness

● No buffer data corruption

– Real-time impact
● Wait-free (kernel)
● Lock-free (user-space)

– Reentrancy
● Nested NMI-handler progress ensured by wait-

free and lock-free guarantees.

● Model coverage verified with error-injection 
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> RCU Implementations Model

● Out-of-order memory access model
● Weakly-ordered instruction scheduling model
● Model coverage verified with error-injection
● Correctness

– Publication and grace-period guarantees

● Progress verification
– Read-side wait-free

– Write-side is never starved by readers
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> Discussion

● Tracer properties
● Application domain
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> Tracer Properties

● Latency
● Throughput
● Scalability
● Real-time
● Portability
● Reentrancy
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> Application Domain

● Live production commercial servers
– Stability (correctness proofs)

– Require low-overhead tracer

● Soft real-time applications
– Video edition, telecommunication

– Soft real-time, high-throughput

● Real-time distributions
– Wind River Linux, Monta Vista, STLinux

– Require predictable RT impact (wait-free)
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> Conclusion

● Research
● Original scientific contributions
● Future research perspectives
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> Research (1/4)

● Brings further
– Lock-less buffering schemes, pioneered by the 

K42 tracer (Robert Wisniewski)

– User-level RCU implementations
● Usable in production (Debian, Gentoo)

– Formal verification of parallel algorithms at the 
architecture level
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> Research (2/4)

● Journal articles
– Wiley Software – Practice and Experience

● Synchronization for Fast and Reentrant Operating 
System Kernel Tracing

– Recommended for publication

– ACM TOCS
● Lockless Multi-Core High-Throughput Buffering 

Scheme for Kernel Tracing

– IEEE TPDS
● User-Level Implementations of Read-Copy Update
● Multi-Core Systems Modeling for Formal Verification 

of Parallel Algorithms
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> Research (3/4)

● Impact (research articles using LTTng)
– Power variations over time in disk operations

– Study which applications are run concurrently 
over a long period of time

– Feed information to an anomaly detection 
service, part of an operating system

– Hooks to monitor kernel execution inspired from 
Tracepoints (Lemona)
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> Research (4/4)

● Original scientific contribution
– LTTng buffer synchronization algorithm

– Creation of an RCU-based trace clock

– Design of complete kernel tracer
● Wait-free, linearly scalable, NMI-safe algorithms

– Self-modifying code technique to activate 
instrumentation

– User-space RCU improvements

– Out-of-order architecture model for formal 
verification
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> Objectives (1/2)

● All tracer properties met
– Latency

– Throughput

– Scalability

– Real-time

– Portability

– Reentrancy
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> Objectives (2/2)

● Used by the industry
– Google

– IBM

– Ericsson

– Autodesk

– Wind River

– Fujitsu

– Monta Vista

– STMicroelectronic

– C2 Microsystems

– Sony

– Siemens

– Nokia

– Defence Research and 
Development Canada.
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> Future Research Perspectives

● New analysis
– System-wide traces from production systems

– Energy efficiency

– Performance improvements

● Trace time synchronization
– Multi-nodes

– Non-synchronized TSC

● Architectures with non-coherent caches
– Blackfin, Intel 48-core
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> Questions ?

?
● LTTng project website: http://www.lttng.org

http://www.lttng.org/
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