Adaptative Fault Probing

presented by
Mathieu Desnoyers and
Michel Dagenais

Ecole Polytechnique de Montréal
December 10th, 2009

POLYTECHNIQUE
MONTREAL

> Summary

* |[ntroduction

e State of the art
 Methodology
 Experimental results
e Discussion
 Conclusion

POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers 2
MONTREAL

> |Introduction (1/2)

» | arge-scale multiprocessor
 Complexity increase

 Problems harder to investigate

* Need for system-wide analysis tools

POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers 3
MONTREAL

> |Introduction (2/2)

e Tracing

 Increasing hardware resources not a solution
* Tracing vs profiling

\A ¢
\"\ 1"/
Sago” ’
BN Lo
=i ECOLE
v

PYTECHN!OUE December 10th, 2009 Mathieu Desnoyers 4
MONTREAL

> Objectives

* Meet requirements, solve problems identified by

* Implement a tracer for Linux

POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers S
MONTREAL

> Objectives

. of each tracer component

- Low-impact on the operating system
- Low-impact on average

 Guarantee a deterministic impact of tracing on
response

* Provide high and of tracer
mechanisms

POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers 6
MONTREAL

> State of the Art

 Computer architectures

e Real-time

e Distributed systems

POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers 7
MONTREAL

> State of the Art (Tracing)

o« LTT
e SystemTAP

e« KTAU
e K42
e Dtrace

e Ftrace

POLYTECHNIQUE December 10th, 2009
MONTREAL

Mathieu Desnoyers

> Methodology

e |[nteraction with the community
* Tracer design

* |[mplementation

* Verification

POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers 9
MONTREAL

> Interaction with the Community

e |[ndustry

 Open Source Community
* Conferences

PYTECHN!OUE December 10th, 2009 Mathieu Desnoyers 10
MONTREAL

> [racer Design

Tracing —
0 ¢ -\Instrumentation >
n-site L
Scalability to multi—cores i
Deterministic real—ti ffect —
eterministic real-time effec < Probes \
Low-latency -
Low-overhead I
)) Portability < Data extraction >
Tracing phases properties —
o Input/Ouput
Post—processing - AvAR
Off-site '/\Mﬂ‘ge-sol‘t >
Cross—architecture o i T
Scalability to large traces U S
< Analysis >

POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers 11
MONTREAL

> Tracer Components Overview

Kernel core Kernel modules
Instrumented code Instrumented code
call ™ <" call
Read Write
ea (synchronized)
I\
Tracg Channels
session +Contains *
' G 1
O
KERNEL-SPACE r - b - o e e
______ ' DebugFs " L - — — — -
USER-SPACE Le-weo-c-cooaaaa -
L) v Read
Readerltf::, v (synchronized)
Tttctl > 1ttd
Write Write
Storage
December 10th, 2009 Mathieu Desnoyers 12

MONTREAL

> Tracer Probe
Architecture

Probe data flow

,

mm

Tracer control
(RCU)

WA s
\\:\I 1"’/
= ECOLE

CHNIQUE
TREAL

Event Data

Memory

EAX
EBX
ECX
EDX
ESI
EDI
EBP
ESP
EIP
EFLAGS

Tracepoints, Immediate Values.
(Read-Copy Update (RCU))

Registers

I,

Trace Session

Time Stamp

Read
Trace clock extension
! / (RCU)
Read Read
robe
Channels \
A N |
| R/W L1 Write |
| | |
. Write Read --1-i-oo_» |
. count count | | Pointer | LTTng wait-free buffering
o T "pointer | scheme
Buffer Management ' Circular Memory | (local atomic operations)
| | |
___Counters_ 1] Buffer = |

December 10th, 2009

Mathieu Desnoyers 13

Instrumentation: Kernel Markers,

> |mplementation

» User-space RCU library (liburcu)
e Static instrumentation

 LTTng kernel tracer

PYTECHN!OUE December 10th, 2009 Mathieu Desnoyers 14
MONTREAL

> Read-Copy Update (RCU)

Pre—existing reads

rcu_read_lock() rcu_read_unlock()
| |
| |
Reader 1 reads :re#ds | reads
L/ |
A Reader 2 read reads '
= Y :
Eﬂ Reader 3 reads :/ reads
= d .
— Reader 4 reads | reads
| |
Updater removal grace period reclamation
Time /% : :
| |
rcu_assign_pointer() / Grace period
synchronize_rcu() waits for completion
of pre—existing reads
Schematic of RCU grace period and read-side critical sections
POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers 15

MONTREAL

> User-space RCU

* Goal for user-space tracing

* Need to support being used from tracer library
without modifying the application

* Need for high-performance read-side

PYTECHN!OUE December 10th, 2009 Mathieu Desnoyers 16
MONTREAL

> |nstrumentation Mechanisms

e Static tracepoints

 Immediate values
 Static jump patching

 Dynamic tracepoints

POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers 17
MONTREAL

> Static Tracepoints

e Declared at source-code level, enabled
dynamically

 Easy to manage within distributed source-control
 Easy to use by field engineers

 Based on a branch over a function call
 GCC optimization-friendly

- Guarantee presence of parameters at call site
 Faster than dynamic tracepoints when enabled

@ °* Adding new TP requires to recompile

POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers 18
MONTREAL

> Immediate Values

e Efficient tracepoint activation
 Encode branch condition in instruction stream
* | ow-latency instruction patching

* | ed to gcc "asm goto” (gcc 4.5)

PYTECHN!OUE December 10th, 2009 Mathieu Desnoyers 19
MONTREAL

> LTTng Buffering Scheme (1/2)

AN
Channel
Buffer CPU O | Buffer CPU 11| Buffer CPUN | | Reserved
Reserved ' S_“_b_ buffer _D' ' S_U_b_ buffer _D' ' S_U_b_ buffer _ﬂ' slot
‘' Header i || ' Header ! ' Header ¥
slot = b= —m - - W[ik--------- L bmm-mm oo
\ nEvent 0 |: ||E_U_E_HE_I:]____|: o 1
{:L _________ !: :!-Event 1 !: uEvent 1 ¥
""""""" II 1 '_"_'_"II IL'_"_'_"II
Channel IS | I
components 'Sub-buffer 1! || {Sub-buffer 1} | " | 'Sub-buffer 1;
:-Header i' : , : ,
e | 5
e 1| s

Ny
s ECOLE

POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers 20
MONTREAL

> LTTng Buffering Scheme (2/2)

Per-CPU buftfer

Timer
Read .y .
mterrupt
T e i
Write count
Read.-” ™. '4R q
R/W ea
Commit count | . ’
Producer 1

r/w | Commit seq

Commit count
R/W Commit seq

Read count < @
ARew ECOLE

POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers 21
MONTREAL

> LTTng Trace Clocks

MSB @ LSB @

“iipdaté™.. | 0x00000124 | 6x06000020

@ < 3 | 0xA0000000

Cycle counter
RCU-based ® ./

synchronization 406000000

Trace clock update (1, 3, 4) interrupted by a read (2)

POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers 22
MONTREAL

> Experimental Results

e Benchmarks
» Formal verification

PYTECHN!OUE December 10th, 2009 Mathieu Desnoyers 23
MONTREAL

> Benchmarks

 Read-Copy Update (user-level)

L TTng buffering scheme

PYTECHN!OUE December 10th, 2009 Mathieu Desnoyers 24
MONTREAL

> RCU Read-side Overhead

1e+10 ————7— L B T " T

e T GseR
10409 L% x X Signal-based RCU -
[o = N = AL N General-purpose RCU ----%--- 1
I i S Per-thread mutex - @
S 1e+08 ¢ “wthread reader-writer lock - -m-- 7
o _ pthread mutex o~
- 1e+07 F =
7 _
© Il © =R fals ° LW
S 1e+06 | Treeeoa- :
—— ”'6._
o - o 1
= 100000 | o ;
£ 10000 | o i
< m'“'a
1000 ¢ .‘G“'w@ -
: x'“'e:
100 1 al 1 M | 1 al 1 1 'l 1 M | 1 al 1 1 1
0.1 1 10 100 1000 10000 100000 1e+06

Read-side C.S. length (in cycles)

Impact of read-side critical section length, 64 reader threads on POWERS5+.
Logarithmic scale.

POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers 25
MONTREAL

> RCU Read-side Scalability

9e+09 | | |
QSBR —+—
8e+09 r Signal-based RCU --- |
General-purpose RCU %
2 7e+09 | Per-thread mutex & o
3 pthread mutex --=-—- } 00
8 6e+09 pthread reader-writer lock o o |
P 3%
- 5e+09 | » e |
@ Xxx
@
w 4e+09 | xxxxxx |
8 xxxxx
2 3e+09 " |
E o
é 2e+09 xxx.xxx |
xxxxx B it
1e+09 B L 2 *Héx***x**%*x*****%**%*** -
0 r-"‘ ki R éééﬁé e s s e s nmmn o EE SRRy

Number of cores

Read-side scalability for various synchronization primitives, 64-core POWERS+.
Linear scale.

S

wif¥es ECOLE

POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers 26
MONTREAL

> LTTng Latency Impact

Test Events / | avg. | std.dev.
round-trip | (us) (us)

No tracing — | 40.0 12.8

Flight recorder tracing 27 | 49.0 14.3

Tracer latency overhead for a ping round-trip. Local host, Linux 2.6.30.9, Intel
Xeon 2.0 GHz, 100 000 requests sample, at 2 ms interval. With background
noise.

 Added latency between 328 and 338 ns per
event (95 % confidence interval).

» Cache-hot micro-benchmarks: 119 ns

POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers 27
MONTREAL

> L TTng Latency Impact (cache-hot)

Architecture Cycles | Core freq. | Time
(GHz) (ns)

Intel Pentimm 4 H45 3.0 132
AMD Athlon64 X2 628 2.0 314
Intel Core2 Xeon 238 2.0 119
ARMvT OMAP3 H0T 0.5 1014

Cycles taken to execute a LTTng 0.140 probe, Linux 2.6.30.

PECHN!OUE December 10th, 2009 Mathieu Desnoyers 28
MONTREAL

> LTTng Throughput Impact (1/4)

NTREAL

Test Tbench Throughput | Overhead | Trace Throughput
(MB/s) (%) (¥10” events/s)
Mainline Linux kernel 12.45 0 —
Dormant instrumentation 12.56 0 -
Overwrite (flight recorder) 12.49 0 104
Normal tracing to disk 12.44 0 107
tbench client network throughput tracing overhead.
S ECOLE
POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers 29

> LTTng Throughput Impact (2/4)

Test Tbench Throughput | Overhead | Trace Throughput
(MB/s) (%) (¥10” events/s)
Mainline Linux kernel 2036.4 0 -
Dormant instrumentation 2047.1 -1 —
Overwrite (flight recorder) 1474.0 28 9768
Normal tracing to disk — — —
tbench localhost client /server throughput tracing overhead.
m ECOLE
:\’AO(IS NE?-l'?NI!EQXE December 10th, 2009 Mathieu Desnoyers 30

> LTTng Throughput Impact (3/4)

Test Dbench Throughput | Overhead | Trace Throughput
(MB/s) (%) (*10% events/s)
Mainline Linux kernel 1334.2 0 -
Dormant instrumentation 1373.2 -2 -
Overwrite (flight recorder) 1297.0 3 2840
Non-overwrite tracing to disk 872.0 39 2562
dbench disk write throughput tracing overhead.
POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers 31

MONTREAL

> LTTng Throughput Impact (4/4)

Test Time | Overhead | Trace Throughput

(s) (%) (%¥10° events/s)
Mainline Linux kernel 89 0 -
Dormant instrumentation 84 -1 —
Overwrite (flight recorder) 87 3 822
Normal tracing to disk 90 6 816

Linux kernel compilation tracing overhead.

\ &
s ECOLE

POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers 32
MONTREAL

> LTTng Scalability Impact

2200 No traci, |
I otracing ——— |

~ 2000 With tracing -~ /
3 1800 - -
g 1600
*é 1400 ¢
< 1200
5 1000
= 800 r
S 600 r
;’é 400 r o

200

| 2 3 = 5 6 7 8

Number of cores

Impact of tracing overhead on localhost tbench workload scalability.

,

O
1"'/
2 &
A
SRS
Jit COLE

CTZI-,I?NEO/&JIE December 10th, 2009 Mathieu Desnoyers 33

mm

> Formal Verification

* Model-checking

e Models

POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers 34
MONTREAL

> LTTng Buffering Scheme Model

 Characteristics verified:

* No buffer data corruption

» Wait-free (kernel)
 Lock-free (user-space)

* Nested NMI-handler progress ensured by wait-
free and lock-free guarantees.

 Model coverage verified with error-injection

POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers 35
MONTREAL

> RCU Implementations Model

e Out-of-order memory access model
* \Weakly-ordered instruction scheduling model

 Model coverage verified with error-injection
» Correctness

* Progress verification

PYTECHN!OUE December 10th, 2009 Mathieu Desnoyers 36
MONTREAL

> Discussion

* Tracer properties
* Application domain

POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers 37
MONTREAL

> Tracer Properties

e |atency

e Throughput
e Scalability
 Real-time

* Portability

 Reentrancy

PYTECHN!OUE December 10th, 2009 Mathieu Desnoyers 38
MONTREAL

> Application Domain

* Live production commercial servers

e Soft real-time applications

 Real-time distributions

PYTECHN!OUE December 10th, 2009 Mathieu Desnoyers 39
MONTREAL

> Conclusion

 Research
* Original scientific contributions
* Future research perspectives

PYTECHN!OUE December 10th, 2009 Mathieu Desnoyers 40
MONTREAL

> Research (1/4)

e Brings further

e Usable in production (Debian, Gentoo)

\A ¢
\"\ 1"/
Sago” ’
BN Lo
siitre ECOLE
v

PYTECHN!OUE December 10th, 2009 Mathieu Desnoyers 41
MONTREAL

> Research (2/4)

e Journal articles

« Synchronization for Fast and Reentrant Operating
System Kernel Tracing

- Recommended for publication

 Lockless Multi-Core High-Throughput Buffering
Scheme for Kernel Tracing

» User-Level Implementations of Read-Copy Update

* Multi-Core Systems Modeling for Formal Verification
of Parallel Algorithms

PYTECHN!OUE December 10th, 2009 Mathieu Desnoyers 42
MONTREAL

> Research (3/4)

* |[mpact (research articles using LTTngQ)

PYTECHN!OUE December 10th, 2009 Mathieu Desnoyers 43
MONTREAL

> Research (4/4)

* Original scientific contribution

» Wait-free, linearly scalable, NMI-safe algorithms

PYTECHN!OUE December 10th, 2009 Mathieu Desnoyers 44
MONTREAL

> Objectives (1/2)

» All tracer properties met

POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers 45
MONTREAL

> Objectives (2/2)

 Used by the industry

\A ¢
\"\ 1"/
Sago” ’
BN Lo
=i ECOLE
v

PYTECHN!OUE December 10th, 2009 Mathieu Desnoyers 46
MONTREAL

> Future Research Perspectives

 New analysis

* Trace time synchronization

 Architectures with non-coherent caches

POLYTECHNIQUE December 10th, 2009 Mathieu Desnoyers 47
MONTREAL

> Questions ?

o LT Tng project website: http://www.lttng.org

PYTECHN!OUE December 10th, 2009 Mathieu Desnoyers 48
MONTREAL

http://www.lttng.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

