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System Health Monitoring and
Reactive Measures Activation

SHM continuously monitors the health
of a multi-core distributed system so
that system anomalies (bad behaviors
and attacks) can be detected and
handled appropriately
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System Health Monitoring Components

Trace abstraction, X
analysis - Data Gathering
and correlation (LTTng)

/
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System Health Monitoring Architecture

Response L
/ Data Gathering \
Detection_1 Detection_2 Detection_n

=\ Analyze
\ e \ Alerts (real priority)

/ Prevention \

52:

83:
E

wnﬁd.

User1 User2 Usern

Alert Priority Alerts Correlation

Sn:

Max 50:

e \scmw Alerts (new priority)
Update Alerts
so|s1|s2|s3 Sn Correlation
Or
Plan 1 (Notify Administrator) | 2 | 1 | 1 | 2 2 -
Plan 2 (Backup) 1 1 Alerts —_— Reset Alerts
Plan 3 (Block IP) 2n |1 3 Risk Index T Alerts Priority
n n n v
Plan n (Shutdown) n / = \ e oo ) N
Risk Assessment Prediction
1 0.9
0.8
0.8p3 ) . Compromize| oz
iy Risk | PreProcessing | .. B Normal
05 O atte
04 Index < o et
P2 . . 03 Progress
0.2 ‘ Online Processing ‘ 02 B Compromize
TP o1
0 )i 0

\\ / \ Alert 1 Alert 2 Alert 3 Alertn
\ / AN

5 Tracing and monitoring distributed multi-core systems




Alert Optimization
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Alert Optimization (1)
Alert correlation means to extract true alerts from alerts generated by
detection component (filter view)
In this project, we have taken a different view comparing to the filter view

Multi steps attack's actions are unknown but may be partially detected by
detection component and reported as alerts
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Alert Optimization (2)

» Alert optimization component increases alert priority with correlation
concepts

Alert Correlation
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System Health Monitoring Architect¢ure
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Alert Optimization (3)

« Alerts Correlation

» Alerts correlation shows correlation weights between any two alerts
» It plays an important role in attack prediction
» |tis defined by expert persons

|t will be updated by receiving hints from prediction component. It
happens whenever the probability of progress state is more than 90%

W12 W13 W1n
W21 W22 W23 W2an
W31 W32 W33 W3n
Wn1 Wn2 Wn3 Wnn

Alert Correlatiom Matrix (ACM)
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Alert Optimization (4)

 Alert Priority

» Alert priority is computed by an exponential formula

« At the beginning, it is equal to the real priority of alert

. . E*N /K*A-E*N
« The equation for each alertis : [ oy = ( )

- E (Effect of Alert): It is extracted from the Alert Correlation Matrix and is
varied if ACM is updated

- N (Frequency of each Alert)
- A (Acceptable number of alert per day)

- K (Empirical constant): Function has good results with K=200

* fis reset when prediction component sent a message that an intrusion
will be happend
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Prediction
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Prediction Structure

« The prediction component will attempt to make a prediction of a possible
future problem

A model is needed to capture the interaction between the attacker and the
distributed network
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Prediction Algorithms-HMM

Observation = {low,
W medium, high, very high}
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Prediction Results (1)

MIT Library Data Set
(DARPA)

Trace abstraction,
analysis
and corr 1

- — ,
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Prediction Results (2)

« Lincoln Laboratory 2000 data set (DARPA)

The data set contains more than 3 hours of intrusion
detection data

The data set contains an attack in 5 phases

« Finally, 3 hosts are attacked and compromised
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Phase Name Time Goal
The attacker sends ICMP echo-requests in this
1 IP sweep 9:451t0 09:52 sweep and listens for ICMP echo-replies to
determine which hosts are "up"
The hosts discovered in the previous phase are
Sadming probed to determine which hosts are running the
2 Pin 10:08 to 10:18 "sadmind" remote administration tool. This tells the
g attacker which hosts might be vulnerable to the
exploit that he/she has
The attacker then tries to break into the hosts found
3 Break into 10:33 t0 10:34 to be running the sadmind service in the previous
phase. Breakins via the sadmind vulnerability
4 Installation 1050 Installation of the trojan mstream DDoS software on
three hosts
5 Launch 11:27 Launching the DDoS
18 Tracing and monitoring distributed multi-core systems




Prediction Results (4)

« RealSecure generates 922 alerts based on DDOS1.0

TelnetTerminaltype

RIPAdd @
[ ]
Mstream_Zombie (@
-
HTTP Java =
[
FTP User (S
]
FTP_Pass |y
I ————

Email_Debug @

O
Admind | .
0 100 200 300 400 500 600
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Prediction Results (5)

« RealSecure generates this alerts for each phases

1 IP sweep No alert is generated for this phase

2 Sadmind Ping Sadmind_ping

3 Break into Sadmind_Amslverify_Overflow, Admind
4 Installation Rsh, MStream_Zombie

5 Launch Stream_DOS
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Prediction Results (7)
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Risk Assessment
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Prevention
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Prevention

Prevention component will try to run good strategies for trigger reactive
measures with the objective of:

- Preventing the problem growth
- Returning system to the healthy mode

26
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Prevention Structure
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Prevention - Plan

Change All Passwords
Format the Hard Disk

IP Blocking
Dropping Packets

Killing Process °
Reboot *
Shutdown

TCP Reset

Delete files

Run Virus Check

Turn off the services

Applying Patch
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