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Reporting on Four Studies that We 

Conducted: Outline 

• Our objective is to investigate advanced anomaly 

detection techniques 

– Study 1 - Comparing kernel space and user space 

tracing mechanisms for anomaly detection 

– Study 2 - Reducing false positive rate using 

generalization of system calls 

– Study 3 - Enhanced hidden Markov model using 

the concept of n-gram 

– Study 4 - Linux-based attack taxonomy 

2 



 

 

3 

Comparison of user space and kernel space traces in 

discovering anomalous software behaviour 

Duration: May to July and October, 2011 

 



Why Identify Anomalous Behaviour? 

• Identification of normal and anomalous software 

behaviour is important in: 

– Software debugging, such as fault localization (Murtaza et 

al. 2010, Jones et al. 2005)  

– Autonomic computing, such as self managing applications 

(Jiang et al. 2005)  

– Software intrusion, such as anomaly detection systems 

(Warrender et al. 1999,  Wang et al. 2004) 
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User space tracing 

User space tracing 

Kernel space tracing 



Trace Examples 

 Function call trace 
(User space) 

  System events trace 
(Kernel space) 
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No comparison of user space and kernel space tracing 

exists in the literature: can we substitute one with another 

or which one is the best?  



Research Questions 

• (Q1) Can kernel space tracing be used to classify pass 

fail traces of a program with the same accuracy as user 

space tracing? 

 

• To find the answer we employed six classification algorithms (i.e., 

NB, C4.5, ANN, SVM, BBN, and HMM) and in the process identified 

a novel secondary research question. 

 

• (Q2) Can we substitute one classification algorithm with 

another without affecting the accuracy of classification of 

normal and abnormal traces? 

 

6 



Approach 

• Step 1: Collect user space and kernel space traces. 

• Step 2: Extract events (e.g., function or system calls). 

• Step 3: For each type of tracing evaluate all the classifiers from 
two perspectives: 

(a) Training and testing on both normal and anomalous traces.  

(b) Training on only normal traces and testing on both types of traces. 
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NB,  C4.5, ANN, 

SVM, BBN, HMM 



Dataset 

 Releases used: Flex 2.5.1; Grep 2.4; Gzip 1.1.2; Sed 4.0.7. 

Prog. LOC  # Functions # Faults # Passing 

Traces 

#Failed 

Traces 

Flex 9724 167 20 566 545 

Grep 9041 149 18 799 710 

Gzip 4032 88 16 214 204 

Sed 4735 115 6 366 166 
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Results for two-class classification 

Flex 

Algo. TP FP AUC 

C4.5 0.924 0.099 0.925 

NB 0.159 0.053 0.609 

BBN 0.371 0.145 0.675 

ANN 0.981 0.804 0.646 

SVM 0.721 0.323 0.699 

HMM 0.706 0.0 0.416 
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Flex 

Algo. TP FP AUC 

C4.5 1.00 0.002 0.998 

NB 1.00 0.002 0.999 

BBN 0.993 0.004 0.999 

ANN 0.998 0.002 1.00 

SVM 0.998 0.002 0.998 

HMM 1.00 0.002 0.996 

Results on user space traces Results on kernel space traces 



Answers to Research Questions 

(1) Kernel space tracing identifies software anomalies better 

than the function call traces at user space level 

– Time to train classifiers on kernel space traces was 20-60%  

less than user space traces   

(2)  No significant difference exist among classification 

algorithms in detection of software anomalies using 

execution traces  

– However, the C4.5 decision tree yields higher accuracy in 

two-class classification and neural network yields higher 

accuracy in one-class classification.  
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Reduction of false positive rate in anomaly detection 

through generalization of system calls. 

         Duration: Aug. to Oct., 2011. 



False positives: A major problem 

in anomaly detection system 

• A major problem is the generation of number of incorrect 

alarms on normal software behaviour— i.e., false positives. 

• A large number of false positives in anomaly detection 

systems have made the misuse (signature based) detection 

systems first choice in the industry.  
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Is the problem in the application of algorithms on 

different datasets or is it in the properties of 

underlying data? 



Motivating Example 
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Sequence 1 
fork 
read 
read 
fork 
read 
read 
fork 
read 
read 
fork 
read 
read 

Sequence 2 

fork 

read 

read 

fork 

read 

read 

fork 

read 
fork 
read 

Different contiguous repetitions of 

system calls but the task performed is 

exactly the same: creation of a 

process (fork) and reading from an 

I/O device (read). 

 

There will be a mismatch (false 

positive) for ―Sequence 2‖ if an 

algorithm is trained on ―Sequence 1‖, 

even though the task is the same. 

 

These observations warrant an 

empirical investigation. 



Research Hypothesis 

On generalizing system calls, we can reduce false 

positive rate of an anomaly detection algorithm 

without affecting the true positive rate 
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Approach 
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Datasets 

Program Intrusion 
traces 

Normal 
traces 

Normal 
traces used 
for training 

Normal 
traces used 
for testing 

Sendmail 25 346 135 211 

Stide 105 13726 600 13126 

MIT live  lpr 1001 2703 415 2288 

UNM live lpr 1001 4298 390 3908 

Xlock 2 1731 121 1610 
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Results 

Sendmail Stide MIT live  
lpr 

UNM live 
lpr 

Xlock 

FP TP FP TP FP TP FP TP FP TP 

Win(w) = 6 Stide  24 16 69 104 196 1001 571 1001 24 2 

CRA 23 16 66 104 181 1001 327 1001 18 2 

Win(w)= 10 Stide 27 16 12746 104 350 1001 803 1001 24 2 

CRA 25 16 137 104 183 1001 356 1001 18 2 

Win(w)=15 Stide 30 16 12760 104 458 1001 869 1001 24 2 

CRA 27 16 187 105 183 1001 423 1001 18 2 

Win(w)=20 Stide 33 18 12770 104 537 1001 958 1001 24 2 

CRA 33 18 188 105 212 1001 473 1001 18 2 
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Significant difference exists in false positives, 

according to Wilcoxon signed rank test; but no 

significant  increase in TP at higher win width. 



Results 

• At window width 6, the effect size is 0.5482 between 

our approach and Stide: 

–  The results are interpreted as: 
• The average false positive rate of Stide will be 0.5482 standard 

deviations above than the average false positive rate of CRA. 

 

• Thus, our hypothesis has been validated: False 

positives can be reduced significantly by removing  

contiguous repetitions of system calls. 
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Enhanced hidden Markov model using the concept of 

n-gram. 

                                      Duration: May to Oct., 2011. 



Hidden Markov Model (HMM) 

Advantage: 

Very Accurate 

Disadvantage: 

Very Slow 

The Time Complexity = O(N(1+T(M+N))) [Langford 07]  

• Number of Observables (M) 

• Number of Hidden States (N) 

• Length of Training Sequences (T)  
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Proposed Algorithm: I-HMM 

 

HMM 

 

 

I-HMM 

 

Reduce the training time 
• Reduce the number of observables 

• Reduce the length of training sequences 

Use frequent pattern 

(N-Gram) extracting 

technique 
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N-Gram Extraction: Example 

Training Traces: ECDB, CDBA and EACDB 

A (2) 

B (3) 

C (3) 

D (3) 

E (2) 

EC (1) 

CD (3) 

DB (3) 

BA (1) 

EA (1) 

AC (1) 

frequency(pk+1) > α * min(frequency(qk), frequency(rk) ) 

CDB (3) 

1-gram 2-gram 3-gram 

[α = 0.6] 
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Replacement of N-Grams: Example 

Training Traces: ECDB, CDBA and EACDB 

ECDB, CDBA, EACDB 

E8, 8A, EA8 

Assign unique ID: A(2) = 1, B(3) = 2, C(3) = 3, D(3) = 4, E(2) = 5, CD(3) = 6, 

DB(3) = 7, CDB(3) = 8 

Replace CDB 

Replace A 

E8, 81, E18 

Replace E 

58, 51, 518 
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Model Construction 

Reduces the size of the set of 

the observables 

HMM 

• Set of Observables = {A, B, C, D, E} 

• Set of Training Sequences = {ECDB, CDBA, EACDB} 

• Set of Hidden States = {X1, X2, …., Xm} 

I-HMM 

• Set of Observables = {1, 5, 8} 

• Set of Training Sequences = {58, 51, 518} 

• Set of Hidden States = {X1, X2, …., Xm} 

Reduces the length of the 

training sequences. 
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Experiments and Results 
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Experiments and Results 

Training Time Reduction in I-HMM Algorithm
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Experiments and Results 

Accuracy for HMM and I-HMM Algorithms
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 Linux Kernel-based attack taxonomy. 

Duration: Sep. to Nov., 2011 

 



Objective 

• Build a taxonomy of known attacks and vulnerabilities 

for the Linux kernel 

– That can lead to techniques for mitigating these 

attacks 

 

• There exist many attack taxonomies 

– They vary in coverage and target platforms 

– None focuses explicitly on the Linux kernel 

– Refer to: ―AVOIDIT: A Cyber Attack Taxonomy‖ by 

C. Simmons et al. from the University of Memphis 
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Proposed Attack Taxonomy 

Framework 

 Affected 
component 

The component of the Linux kernel that is 
vulnerable: Net, fs, etc.. 

Effect of the 
attack 

What effect the attack has on the system:  DoS, 
privilege escalation, information disclosure 

Origin of attack Locally exploitable, local area network 
exploitable, and remotely exploitable 

Complexity of 
access 

The need of privileges, special conditions, 
presence of other vulnerabilities... 

Impact Classified into confidentiality, Integrity, and 
Availability 
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Analysis of the 2011 Linux Kernel 

Vulnerabilities  

• We studied 77 vulnerabilities in the Linux Kernel 

discovered and reported in the year 2011 

– Based on the  vulnerabilities discovered and reported in 

2011 

– We used www.cvedetails.com to filter Linux Kernel 

based vulnerabilities from the CVE database 
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http://www.cvedetails.com/


Analysis of 2011 Kernel Vulnerabilities 

Based on Affected Component 



Analysis of 2011 Kernel Vulnerabilities 

Based on the Effect of Attack 
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Analysis of 2011 Kernel Vulnerabilities 

Based on the Origin of the Attack 

 

79% 

11% 

10% 

Local 

Local Network 

Remote 
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Analysis of 2011 Kernel Vulnerabilities 

Based on Access Complexity 

9% 

56% 

35% 

High 

Low 

Medium 
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Analysis of the 2011 Data Based 

on the Vulnerability Impact 
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Conclusions 

• Kernel space tracing is better than user space tracing 
in detecting normal and anomalous behaviour 

• Classification algorithms when classifying normal and 
abnormal software behaviour yield similar results 

• Generalization of system calls can reduce false 
positive rates significantly 

• Using n-gram representation of function calls reduce 
the training time of HMM by 31.96% to 48.44% 

• Most of the Linux vulnerabilities are exploited through 
host based attacks 
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Future Work 

• Experiment with trace abstraction techniques to 

further reduce the trace size and training time 

• Study other anomaly detection mechanisms based 

on continuous monitoring of system usage 

• Incremental analysis of host-based systems to 

multiple system processes 

• Investigate additional generalization methods in 

detection of anomalies 

• Investigate feedback-directed and self-adaptive 

anomaly detection techniques 
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Thank you! 
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