
Improving Host Based Anomaly

Detection
Shariyar, Afroza, Prasanna and Abdelwahab

Software Behaviour Analysis Research Lab

 abdelw@ece.concordia.ca

Montreal, QC
Dec. 9th , 2011

Reporting on Four Studies that We

Conducted: Outline

• Our objective is to investigate advanced anomaly

detection techniques

– Study 1 - Comparing kernel space and user space

tracing mechanisms for anomaly detection

– Study 2 - Reducing false positive rate using

generalization of system calls

– Study 3 - Enhanced hidden Markov model using

the concept of n-gram

– Study 4 - Linux-based attack taxonomy

2

3

Comparison of user space and kernel space traces in

discovering anomalous software behaviour

Duration: May to July and October, 2011

Why Identify Anomalous Behaviour?

• Identification of normal and anomalous software

behaviour is important in:

– Software debugging, such as fault localization (Murtaza et

al. 2010, Jones et al. 2005)

– Autonomic computing, such as self managing applications

(Jiang et al. 2005)

– Software intrusion, such as anomaly detection systems

(Warrender et al. 1999, Wang et al. 2004)

4

User space tracing

User space tracing

Kernel space tracing

Trace Examples

 Function call trace
(User space)

 System events trace
(Kernel space)

5

No comparison of user space and kernel space tracing

exists in the literature: can we substitute one with another

or which one is the best?

Research Questions

• (Q1) Can kernel space tracing be used to classify pass

fail traces of a program with the same accuracy as user

space tracing?

• To find the answer we employed six classification algorithms (i.e.,

NB, C4.5, ANN, SVM, BBN, and HMM) and in the process identified

a novel secondary research question.

• (Q2) Can we substitute one classification algorithm with

another without affecting the accuracy of classification of

normal and abnormal traces?

6

Approach

• Step 1: Collect user space and kernel space traces.

• Step 2: Extract events (e.g., function or system calls).

• Step 3: For each type of tracing evaluate all the classifiers from
two perspectives:

(a) Training and testing on both normal and anomalous traces.

(b) Training on only normal traces and testing on both types of traces.

7

NB, C4.5, ANN,

SVM, BBN, HMM

Dataset

 Releases used: Flex 2.5.1; Grep 2.4; Gzip 1.1.2; Sed 4.0.7.

Prog. LOC # Functions # Faults # Passing

Traces

#Failed

Traces

Flex 9724 167 20 566 545

Grep 9041 149 18 799 710

Gzip 4032 88 16 214 204

Sed 4735 115 6 366 166

8

Results for two-class classification

Flex

Algo. TP FP AUC

C4.5 0.924 0.099 0.925

NB 0.159 0.053 0.609

BBN 0.371 0.145 0.675

ANN 0.981 0.804 0.646

SVM 0.721 0.323 0.699

HMM 0.706 0.0 0.416

9

Flex

Algo. TP FP AUC

C4.5 1.00 0.002 0.998

NB 1.00 0.002 0.999

BBN 0.993 0.004 0.999

ANN 0.998 0.002 1.00

SVM 0.998 0.002 0.998

HMM 1.00 0.002 0.996

Results on user space traces Results on kernel space traces

Answers to Research Questions

(1) Kernel space tracing identifies software anomalies better

than the function call traces at user space level

– Time to train classifiers on kernel space traces was 20-60%

less than user space traces

(2) No significant difference exist among classification

algorithms in detection of software anomalies using

execution traces

– However, the C4.5 decision tree yields higher accuracy in

two-class classification and neural network yields higher

accuracy in one-class classification.

10

11

Reduction of false positive rate in anomaly detection

through generalization of system calls.

 Duration: Aug. to Oct., 2011.

False positives: A major problem

in anomaly detection system

• A major problem is the generation of number of incorrect

alarms on normal software behaviour— i.e., false positives.

• A large number of false positives in anomaly detection

systems have made the misuse (signature based) detection

systems first choice in the industry.

12

Is the problem in the application of algorithms on

different datasets or is it in the properties of

underlying data?

Motivating Example

13

Sequence 1
fork
read
read
fork
read
read
fork
read
read
fork
read
read

Sequence 2

fork

read

read

fork

read

read

fork

read
fork
read

Different contiguous repetitions of

system calls but the task performed is

exactly the same: creation of a

process (fork) and reading from an

I/O device (read).

There will be a mismatch (false

positive) for ―Sequence 2‖ if an

algorithm is trained on ―Sequence 1‖,

even though the task is the same.

These observations warrant an

empirical investigation.

Research Hypothesis

On generalizing system calls, we can reduce false

positive rate of an anomaly detection algorithm

without affecting the true positive rate

14

Approach

15

Datasets

Program Intrusion
traces

Normal
traces

Normal
traces used
for training

Normal
traces used
for testing

Sendmail 25 346 135 211

Stide 105 13726 600 13126

MIT live lpr 1001 2703 415 2288

UNM live lpr 1001 4298 390 3908

Xlock 2 1731 121 1610

16

Results

Sendmail Stide MIT live
lpr

UNM live
lpr

Xlock

FP TP FP TP FP TP FP TP FP TP

Win(w) = 6 Stide 24 16 69 104 196 1001 571 1001 24 2

CRA 23 16 66 104 181 1001 327 1001 18 2

Win(w)= 10 Stide 27 16 12746 104 350 1001 803 1001 24 2

CRA 25 16 137 104 183 1001 356 1001 18 2

Win(w)=15 Stide 30 16 12760 104 458 1001 869 1001 24 2

CRA 27 16 187 105 183 1001 423 1001 18 2

Win(w)=20 Stide 33 18 12770 104 537 1001 958 1001 24 2

CRA 33 18 188 105 212 1001 473 1001 18 2

17

Significant difference exists in false positives,

according to Wilcoxon signed rank test; but no

significant increase in TP at higher win width.

Results

• At window width 6, the effect size is 0.5482 between

our approach and Stide:

– The results are interpreted as:
• The average false positive rate of Stide will be 0.5482 standard

deviations above than the average false positive rate of CRA.

• Thus, our hypothesis has been validated: False

positives can be reduced significantly by removing

contiguous repetitions of system calls.

18

19

Enhanced hidden Markov model using the concept of

n-gram.

 Duration: May to Oct., 2011.

Hidden Markov Model (HMM)

Advantage:

Very Accurate

Disadvantage:

Very Slow

The Time Complexity = O(N(1+T(M+N))) [Langford 07]

• Number of Observables (M)

• Number of Hidden States (N)

• Length of Training Sequences (T)

20

Proposed Algorithm: I-HMM

HMM

I-HMM

Reduce the training time
• Reduce the number of observables

• Reduce the length of training sequences

Use frequent pattern

(N-Gram) extracting

technique

21

N-Gram Extraction: Example

Training Traces: ECDB, CDBA and EACDB

A (2)

B (3)

C (3)

D (3)

E (2)

EC (1)

CD (3)

DB (3)

BA (1)

EA (1)

AC (1)

frequency(pk+1) > α * min(frequency(qk), frequency(rk))

CDB (3)

1-gram 2-gram 3-gram

[α = 0.6]

22

Replacement of N-Grams: Example

Training Traces: ECDB, CDBA and EACDB

ECDB, CDBA, EACDB

E8, 8A, EA8

Assign unique ID: A(2) = 1, B(3) = 2, C(3) = 3, D(3) = 4, E(2) = 5, CD(3) = 6,

DB(3) = 7, CDB(3) = 8

Replace CDB

Replace A

E8, 81, E18

Replace E

58, 51, 518
23

Model Construction

Reduces the size of the set of

the observables

HMM

• Set of Observables = {A, B, C, D, E}

• Set of Training Sequences = {ECDB, CDBA, EACDB}

• Set of Hidden States = {X1, X2, …., Xm}

I-HMM

• Set of Observables = {1, 5, 8}

• Set of Training Sequences = {58, 51, 518}

• Set of Hidden States = {X1, X2, …., Xm}

Reduces the length of the

training sequences.

24

Experiments and Results

25

Experiments and Results

Training Time Reduction in I-HMM Algorithm

36.85

33.3032.37
31.96

48.34

37.79

48.44

20

25

30

35

40

45

50

55

60

50 75 100 125 150 175 200

Numer of Traces

Tr
ai

n
in

g
Ti

m
e

R
ed

u
ct

io
n

 (
%

)

26

Experiments and Results

Accuracy for HMM and I-HMM Algorithms

98.0097.7197.3396.8095.00
93.33

88.00
93.00

89.7188.0088.0085.00

78.67

72.00

60.00

65.00

70.00
75.00

80.00

85.00
90.00

95.00

100.00

50 75 100 125 150 175 200

Numer of Traces

A
cc

u
ra

cy
 (

%
)

HMM

I-HMM

27

28

 Linux Kernel-based attack taxonomy.

Duration: Sep. to Nov., 2011

Objective

• Build a taxonomy of known attacks and vulnerabilities

for the Linux kernel

– That can lead to techniques for mitigating these

attacks

• There exist many attack taxonomies

– They vary in coverage and target platforms

– None focuses explicitly on the Linux kernel

– Refer to: ―AVOIDIT: A Cyber Attack Taxonomy‖ by

C. Simmons et al. from the University of Memphis

 29

Proposed Attack Taxonomy

Framework

 Affected
component

The component of the Linux kernel that is
vulnerable: Net, fs, etc..

Effect of the
attack

What effect the attack has on the system: DoS,
privilege escalation, information disclosure

Origin of attack Locally exploitable, local area network
exploitable, and remotely exploitable

Complexity of
access

The need of privileges, special conditions,
presence of other vulnerabilities...

Impact Classified into confidentiality, Integrity, and
Availability

30

Analysis of the 2011 Linux Kernel

Vulnerabilities

• We studied 77 vulnerabilities in the Linux Kernel

discovered and reported in the year 2011

– Based on the vulnerabilities discovered and reported in

2011

– We used www.cvedetails.com to filter Linux Kernel

based vulnerabilities from the CVE database

31

http://www.cvedetails.com/

Analysis of 2011 Kernel Vulnerabilities

Based on Affected Component

Analysis of 2011 Kernel Vulnerabilities

Based on the Effect of Attack

33

Analysis of 2011 Kernel Vulnerabilities

Based on the Origin of the Attack

79%

11%

10%

Local

Local Network

Remote

34

Analysis of 2011 Kernel Vulnerabilities

Based on Access Complexity

9%

56%

35%

High

Low

Medium

35

Analysis of the 2011 Data Based

on the Vulnerability Impact

36

Conclusions

• Kernel space tracing is better than user space tracing
in detecting normal and anomalous behaviour

• Classification algorithms when classifying normal and
abnormal software behaviour yield similar results

• Generalization of system calls can reduce false
positive rates significantly

• Using n-gram representation of function calls reduce
the training time of HMM by 31.96% to 48.44%

• Most of the Linux vulnerabilities are exploited through
host based attacks

37

Future Work

• Experiment with trace abstraction techniques to

further reduce the trace size and training time

• Study other anomaly detection mechanisms based

on continuous monitoring of system usage

• Incremental analysis of host-based systems to

multiple system processes

• Investigate additional generalization methods in

detection of anomalies

• Investigate feedback-directed and self-adaptive

anomaly detection techniques

 38

Thank you!

39

SBA Research Lab: Contact

Information

Dr. Wahab Hamou-Lhadj

Associate Professor

Mailing Address:

Department of ECE

Concordia University

1455 de Maisonneuve West

Montreal, Quebec H3G 1M8 Canada

Tel: +1 514 848 2424 x.7949

Fax: +1 514 848 2802

Email: abdelw@ece.concordia.ca

 Civic Address:

 Department of ECE

 Concordia University

 1515 St. Catherine, West

 Montreal, Quebec H3G 2W1 Canada

40

References
• A. Valdes and K. Skinner, "Adaptive, Model-Based Monitoring for Cyber Attack

Detection," in Proc. of third Intl. Workshop on Recent Advances in Intrusion Detection,

LNCS, Toulouse, France, Oct. 2000, pp. 80-92.

• C. Warrender, S. Forrest, and B. Pearlmutter, "Detecting intrusions using system

calls: alternative data models," in Proc. of 1999 IEEE Symposium on Security and

Privacy, Oakland, USA, May 1999, pp. 133-145.

• D. Y. Yeung and Y Ding., "Host-based intrusion detection using dynamic and static

behavioral models," Pattern Recognition, vol. 36, no. 1, pp. 229-243, Jan. 2003.

• G. Jiang and C. Ungureanu, and K.i Yoshihira H. Chen, "Multi-resolution Abnormal

Trace Detection Using Varied-length N-grams and Automata," in Proc. 2nd Intl. Conf.

on Automatic Comp., Seattle, USA, June 2005, pp. 111-122.

• J. A. Jones, M. J. Harrold A. Orso, "Visualization of program-execution data for

deployed software," in Proc. of the ACM symposium on Soft. Visualization, San

Diego, USA, June 2003, pp. 67-76.

• N. Ye, S. M. Emran, Q. Chen, and S. Vilbert, "Multivariate Statistical Analysis of Audit Trails

for Host-Based Intrusion Detection," IEEE Trans. on Computers, vol. 51, no. 7, pp. 810-820,

July 2002.

References (2)

• S. A. Hofmeyr, S. Forrest, and and A. Somayaji, "Intrusion detection using sequences

of system calls," J. Comput. Security, vol. 6, no. 3, pp. 151-180, Aug. 1998.

• S. S. Murtaza, M. Gittens, and Z., Madhavji, N. H. Li, "F007: Finding Rediscovered

Faults from the Field using Function-level Failed Traces of Software in the Field," in

Proc. of CASCON 2010, Toronto, Canada, Oct. 2010, pp. 57-71.

• W. Lee and S.J. Stolfo, "A framework for constructing features and models for

intrusion detection systems.," ACM Trans. Inf. Syst. Secur., vol. 3, no. 4, pp. 227-261,

Nov. 2000.

• W. Wang, X. H. Guan, and X. L. Zhang, "Modeling program behaviors by hidden

Markov models for intrusion detection," in Proc. of Intl. Conf. on Machine Learning

and Cybernetics, Shanghai, China, Aug. 2004, pp. 2830-2835.

• X. D. Hoang, J. Hu, and and P. Bertok., "A program-based anomaly intrusion

detection scheme using multiple detection engines and fuzzy inference," J. Netw.

Comput. Appl, vol. 32, no. 6, pp. 1219-1228, Nov. 2009.

References (3)
• V. V. Phohaha, ―The Springer Internet Security Dictionary,‖ Springer-Verlag, 2002.

• P. E. Proctor, ―The Practical Intrusion Detection Handbook,‖ Prentice Hall PTR, NJ, USA, 2001.

• V. Chandola, A. Banerjee, V. Kumar, ―Anomaly detection: A survey,‖ ACM Computing Surveys, vol. 41(3), article: 15, July

2009.

• S. Kumar, and E. H. Spafford, ―A pattern matching model for misuse intrusion detection,‖ In Proceedings of the National

Computer Security Conference, Baltimore, MD, 1994, pp. 11–21.

• D. E. Denning, ―An Intrusion Detection Model,‖ IEEE Transactions on Software Engineering, SE, vol. 13(2), 1987, pp. 222-

232.

• S. Forrest, P. D’haeseleer, and P. Helam, ―An immunological approach to change detection: Algorithms, analysis and

implications‖. In Proceedings of the IEEE Symposium on Security and Privacy, IEEE Computer Society, vol. 110, 1996.

• D. Endler, ―Intrusion detection: applying machine learning to solaris audit data,‖ In Proceedings of the IEEE Annual Computer

Security Application Conference, Society Press, 1998, pp. 268 – 279.

• Guofei Jiang, Haifeng Chen, Cristian Ungureanu and Kenji Yoshihara, ―Trace analysis for fault detection for application

server‖, Handbook of Automatic Computing: Concepts, Infrastructures, and Applications, edited by S. Hariri, and P. Parashar,

CRC Press, 2007.

• C. Warrender, S. Forrest, and B. Pearlmutter, ―Detecting intrusions using system calls: Alternate data models,‖ In

Proceedings of the IEEE ISRSP. IEEE Computer Society, 1999, pp. 133 – 145.

• J. Hu, Q. Dong, X. Yu, and H. H. Chen, ―A simple and efficient hidden markov model scheme for host-based anomaly

intrusion detection,‖ IEEE Netw. vol. 23(1), 2009, pp. 42 – 47.

• Jiankun Hu, ―Host-Based Anomaly Intrusion Detection‖, Handbook of Information and Communication Security, Springer,

2010.

• S. Forrest, S. A. Hofmeyr, A. Somayaji. and T. A. Longstaff, ―A sense of self for unix processes,‖ In Proceedings of the IEEE

ISRSP, 1996, pp. 120 – 128.

• E. Eskin, ―Anomaly detection over noisy data using learned probability distributions,‖ In Proceedings of the 17th International

Conference on Machine Learning. Morgan Kaufmann Publishers Inc., 2000, pp. 255–262.

• E. Eskin, W. Lee, and S. Stolfo, ―Modeling system call for intrusion detection using dynamic window sizes,‖ In Proceedings of

DARPA Information Survivability Conference and Exposition (DISCEX), 2001.

References (4)

• A. K. Ghosh, and A. Schwartzbard, ―A study in using neural networks for anomaly and misuse detection,‖ In

Proceedings of the 8th USENIX Security Symposium, 1999.

• N. Abouzakhar, A. Gani, G. Manson, M. Abutbel, and D. King, ―Bayesian learning network approach to cybercrime

detection,‖ In Proceedings of the 2003 Post Graduate Networking Conference, Liverpool, United Kingdom, 2003.

• W. Hu, Y. Liao, and V. R. Vemuri, ―Robust anomaly detection using support vector machines,‖ In Proceedings of the

International Conference on Machine Learning. Morgan Kaufmann Publishers Inc., 2003, pp. 282–289.

• G. Stein, C. Bing, A. S. Wu, and K. A. Hua, ―Decision tree classifies for network intrusion detection with GA-based

feature selection,‖ in Proceedings of the 43rd Annual Southeast Regional Conference, Georgia, 2005, pp. 136 – 141.

• Q. Xu, W. Pei, and Q. Zhao, ―An intrusion detection approach based on understandable neural network trees,‖

Journal of Electronics, 2007, pp. 574 – 579.

• R. C. Chen, K. F. Cheng, Y. H. Chen, C. F., Hsieh, ―Using Rough Set and Support Vector Machine for Network

Intrusion Detection System,‖ In proceedings of the First Asian Conference on Intelligent Information and Database

Systems, 2009, pp. 465 – 470.

• L. R. Rabiner and B. H. Juang, ―An introduction to hidden markov models,‖ IEEE ASSP Magazine, 1986.

• P. F. Brown, V. J. Della Pietra, P. V. deSouza, J. C. Lai, and R. L. Mercer, ―Class-based n-gram models of natural

language‖, Computational Linguistics, vol. 18, pp. 467–479, 1992.

• Gzip Official Website http://www.gzip.org/

• M. Desnoyers, and M. R. Degenais, ―The LTTng tracer: A low impact performance and behavior monitor for

GNU/Linux,‖ In Proceedings of Ottawa Linux Symposium, Ottawa, Canada, July 19 – 22, 2006.

• LTTng Official Website. http://lttng.org

• Weka Official Website http://www.cs.waikato.ac.nz/ml/weka/

• Leonard E. Baum, Ted Petrie, George Soules and Norman Weiss, ―A Maximization Technique Occurring in the

Statistical Analysis of Probabilistic Functions of Markov Chains‖, The Annals of Mathematical Statistics, vol. 41(1),

February, 1970, pp. 164 – 171.

• J. Han, and M. Kamber, ―Data Mining: Concepts and Techniques,‖ 2nd edition, San Francisco: Elsevier, 2006.

• J. Langford: Optimizing hidden Markov model learning, Technical Report (Toyota Technological Institute at Chicago,

Chicago 2007)

http://www.gzip.org/
http://lttng.org/
http://www.cs.waikato.ac.nz/ml/weka/

