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Progress 

• Trace abstraction: 

– We continued to develop trace abstraction techniques for user 

space traces 

– Explored the use of state information in trace abstraction and 

exploration 

– Developed techniques for automatically extracting important 

content from a trace 

• Anomaly detection:  
– Investigation of different tracing mechanisms 

– Reduction of learning time in building models 

– Reduction of false positives 

– Development of a taxonomy of attacks on the Linux kernel 

 



Our Approach for Trace Abstraction 

• Based on the extraction of execution phases 

from large traces 

• What is an execution phase? 

– A segment of program’s execution that performs a 

specific task 

• Trace Segmentation: Automatically divide a 

trace into phases 

– Allow SW engineering to browse traces as a flow of 

execution phases rather than mere sequence of 

events 
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Example 

• A trace generated from a compiler will contain 

the various compiler’s phases including parsing, 

preprocessing, lexical analysis, semantic 

analysis, etc. 

• In most visualization tools, it will look like: 

 

 

• But how can we tell what happens where?  

 

 

4 



Visually… 
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Visually… 
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A different view… 

Nested phases can be added 
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Parsing Preprocessing Lexical Analysis Semantic Analysis Init 
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Research Questions? 

• How can we automatically extract execution 

phases from a trace? 

• What additional information states can reveal 

about execution phases? 

• How can we extract the main components 

that implement a specific phase? 

• Can we use execution phases to further 

reduce the size of traces? 
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Approach: Trace Abstraction 

Framework 
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Our Approach: Trace Abstraction 

Framework 

 



Trace Segmentation Approach 

• The scientific foundation comes from 

the study of the human perception 

system 

– The ability for humans to group similar 

items to form objects and shapes 

– Explained using the Gestalt laws of 

similarity and continuity 
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Measuring Similarity 

  

12 



Measuring Continuity in Traces with 

Nesting Levels 
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Measuring Continuity in Traces with 

Nesting Levels 
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Case Study 

Program: WEKA 3.6.6 

Scenario:  building a decision tree learning algorithm for classifying data instances. 

Trace: Multi-threads 1,571,214 events 

   

Phase 1 Phase 2 Phase 3 Phases 4, 5 

   

     P1 P2 P3 P4 P5 
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Phase flow diagram of a Weka trace  
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Adding phase views to a tool 

Trace T                       
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State Information 

• What is a state? 

– The state of the system is the state value of every attribute in 

the system  

– State has a duration 

– State value, which can really be anything 

• Attributes in the kernel-trace state system : 

– CPUs  

– CPUs/0  

– CPUs/0/current_thread  

– Etc. 
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[1]  http://www.dorsal.polymtl.ca/blog/alexandre-montplaisir/introduction-state-history 



State Change 

Consists of three things:  

• timestamp  

• attribute  

• state value  

 

 

The state of 'attribute' changed to 'state value'  

at time 'timestamp' 
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[1]  http://www.dorsal.polymtl.ca/blog/alexandre-montplaisir/introduction-state-history 



Existing Info 

LTTNG Kernel Space Trace:  

• Timestamp  

• Event (page fault)  

• Process ID 

• CPU ID 

• File Descriptor 
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Phase Flow 
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Phases Mapped to Kernel Space Trace 
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Phases Mapped to Kernel Space Trace 
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Phases Enriched with State Info 
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Phases Enriched: Statistics (1) 
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Phases Enriched: Statistics (2) 
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Comparison: Kernel Space vs User Space 
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Enriched Phase View 
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Approach: Trace Abstraction 

Framework 

 



30 30 

Content Prioritization 

  

 

 

 

 

 

 

 

 

 

• Can give a hint about what is happening in a phase 

• Uncover the  most  relevant  elements  that implement 
the traced scenario 
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1. Extract representative elements of each phase 
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Content Prioritization 
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• Can give a hint about what is happening in a phase 

• Uncover the  most  relevant  elements  that implement 
the traced scenario 

2- Finding similar phases 
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Content Prioritization 
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2- Finding similar phases 
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• Can give a hint about what is happening in a phase 

• Uncover the  most  relevant  elements  that implement 
the traced scenario 

• Optimized flow of phases 
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Extracting Relevant Components 

 Idea: Elements that are repeated in a phase but are 

not much shared between phases indicate their 

relevance to the phase 

 

 This is similar to the concept of term frequency 

inverse document frequency in the text mining 
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Extracting Representative Elements 
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Relevant Events Snapshots 

 

 

 



Case Study: Relevant Events 
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Conclusions 

• We showed trace abstraction techniques based 

on execution phases 

• We added state information to extracted phases 

• We presented techniques for identifying the 

most relevant components of each phase 
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Thank you! 


