
Tracing and Monitoring Distributed
Multi-Core Systems Project

- Progress Meeting -

User Space Trace Abstraction Techniques
Heidar Pirzadeh and Wahab Hamou-Lhadj

Software Behaviour Analysis Lab

 {s_pirzad, abdelw}@ece.concordia.ca

Montreal, QC

Dec. 09, 2011

2

Progress

• Trace abstraction:

– We continued to develop trace abstraction techniques for user

space traces

– Explored the use of state information in trace abstraction and

exploration

– Developed techniques for automatically extracting important

content from a trace

• Anomaly detection:
– Investigation of different tracing mechanisms

– Reduction of learning time in building models

– Reduction of false positives

– Development of a taxonomy of attacks on the Linux kernel

Our Approach for Trace Abstraction

• Based on the extraction of execution phases

from large traces

• What is an execution phase?

– A segment of program’s execution that performs a

specific task

• Trace Segmentation: Automatically divide a

trace into phases

– Allow SW engineering to browse traces as a flow of

execution phases rather than mere sequence of

events

 3

Example

• A trace generated from a compiler will contain

the various compiler’s phases including parsing,

preprocessing, lexical analysis, semantic

analysis, etc.

• In most visualization tools, it will look like:

• But how can we tell what happens where?

4

Visually…

5

Visually…

6

Parsing Preprocessing Lexical Analysis Semantic Analysis Init

A different view…

Nested phases can be added

7

Parsing Preprocessing Lexical Analysis Semantic Analysis Init

 P1 P2 P3 P4 P5

Research Questions?

• How can we automatically extract execution

phases from a trace?

• What additional information states can reveal

about execution phases?

• How can we extract the main components

that implement a specific phase?

• Can we use execution phases to further

reduce the size of traces?

8

9

Approach: Trace Abstraction

Framework

10

Our Approach: Trace Abstraction

Framework

Trace Segmentation Approach

• The scientific foundation comes from

the study of the human perception

system

– The ability for humans to group similar

items to form objects and shapes

– Explained using the Gestalt laws of

similarity and continuity

11

Measuring Similarity

12

Measuring Continuity in Traces with

Nesting Levels

13

Measuring Continuity in Traces with

Nesting Levels

14

Case Study

Program: WEKA 3.6.6

Scenario: building a decision tree learning algorithm for classifying data instances.

Trace: Multi-threads 1,571,214 events

Phase 1 Phase 2 Phase 3 Phases 4, 5

 P1 P2 P3 P4 P5

15

Phase flow diagram of a Weka trace

t1

t2

t3

t4

Threads

Phases

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P1

P2 P3 P4 P5 P6

P7 P8 P9

P10 P11 P12 P13 P14 P15

16

Adding phase views to a tool

Trace T

17

State Information

• What is a state?

– The state of the system is the state value of every attribute in

the system

– State has a duration

– State value, which can really be anything

• Attributes in the kernel-trace state system :

– CPUs

– CPUs/0

– CPUs/0/current_thread

– Etc.

18

[1] http://www.dorsal.polymtl.ca/blog/alexandre-montplaisir/introduction-state-history

State Change

Consists of three things:

• timestamp

• attribute

• state value

The state of 'attribute' changed to 'state value'

at time 'timestamp'

19

[1] http://www.dorsal.polymtl.ca/blog/alexandre-montplaisir/introduction-state-history

Existing Info

LTTNG Kernel Space Trace:

• Timestamp

• Event (page fault)

• Process ID

• CPU ID

• File Descriptor

20

Phase Flow

t1

t2

t3

t4

Threads

Phases

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P1

P2 P3 P4 P5 P6

P7 P8 P9

P10 P11 P12 P13 P14 P15

21

Phases Mapped to Kernel Space Trace

t1

t2

t3

t4

Threads

P1

P2 P3 P4 P5 P6

P7 P8 P9

P10 P11 P12 P13 P14 P15

22

Phases Mapped to Kernel Space Trace

t1

t2

t3

t4

Threads

P1

P2 P3 P4 P5 P6

P7 P8 P9

P10 P11 P12 P13 P14 P15

23

timestamp : t timestamp : t’

Phases Enriched with State Info

t1

t2

t3

t4

Threads

P1

P2 P3 P4 P5 P6

P7 P8 P9

P10 P11 P12 P13 P14 P15

|PID|

|CPU|

|FD|

|Page Fault|

Ratio

CPU usage

Mem. Usage

24

timestamp : t timestamp : t’

Phases Enriched: Statistics (1)

t1

t2

t3

t4

Threads

P1

P2 P3 P4 P5 P6

P7 P8 P9

P10 P11 P12 P13 P14 P15

|CPU|: 2

|PID|: 15

|FD|: 14

|PageFault|: 453

|Ratio|: 60.06 %

25

timestamp : t timestamp : t’

Phases Enriched: Statistics (2)

t1

t2

t3

t4

Threads

P1

P2 P3 P4 P5 P6

P7 P8 P9

P10 P11 P12 P13 P14 P15

|CPU|: 2

|PID|: 17

|FD|: 16

|PageFault|: 526

Ratio: 15.03%

|CPU|: 2

|PID|: 15

|FD|: 14

|PageFault|: 453

|Ratio|: 60.06 %

Comparison: Kernel Space vs User Space

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Kernel Space

User Space

Enriched Phase View

29

Approach: Trace Abstraction

Framework

30 30

Content Prioritization

• Can give a hint about what is happening in a phase

• Uncover the most relevant elements that implement
the traced scenario

P1 P2 P3 P5 P4

Initialization Relevant

information

(Task X)

Relevant

information

(Task Y)

Finalization Relevant

information

(Task X)

P1 P2 P3 P5 P4

1. Extract representative elements of each phase

31 31

Content Prioritization

P1 P2 P3 P5 P4

P1 P2 P3 P5 P4

Initialization Relevant

information

(Task X)

Relevant

information

(Task Y)

Finalization Relevant

information

(Task X)

• Can give a hint about what is happening in a phase

• Uncover the most relevant elements that implement
the traced scenario

2- Finding similar phases

32 32

Content Prioritization

P1 P2 P3 P5 P4

P1 P2 P4

Initialization Relevant

information

(Task X)

Relevant

information

(Task Y)

Finalization

2- Finding similar phases

P3

• Can give a hint about what is happening in a phase

• Uncover the most relevant elements that implement
the traced scenario

• Optimized flow of phases

33

Extracting Relevant Components

 Idea: Elements that are repeated in a phase but are

not much shared between phases indicate their

relevance to the phase

 This is similar to the concept of term frequency

inverse document frequency in the text mining

34

Extracting Representative Elements

“c” “c”

35

Relevant Events Snapshots

Case Study: Relevant Events

t1

t2

t3

t4

Threads

P1

P2 P3 P4 P5 P6

P7 P8 P9

P10 P11 P12 P13 P14 P15

|CPU|: 2

|PID|: 17

|FD|: 16

|PageFault|: 526

Ratio: 15.03%

|CPU|: 2

|PID|: 15

|FD|: 14

|PageFault|: 453

|Ratio|: 60.06 %

weka.core.Instace.value

weka.gui.visualize.Messages

.getString

weka.core.Attribute.isString

weka.gui.explorer.Messages.

getInstance

weka.gui.explorer.Preproces

s.getInstance

36

37

Conclusions

• We showed trace abstraction techniques based

on execution phases

• We added state information to extracted phases

• We presented techniques for identifying the

most relevant components of each phase

38

Thank you!

