GDB User Space/Kernel
Tracepoints

Rafik Fahem
Michel Dagenais
Department of Computer and Software Engineering

) December 9, 2010
Ecole Polytechnique, Montreal

Content

GDB tracepoints
KGTP kernel module
New developments
Results

Future developments

Conclusion

GDB User Space/Kernel Tracepoints

GDB tracepoints

« Debug a program without interrupting it

 Locations in the program to which data collecting probes
are associated

 Collected data: $regs, $args, user defined expressions...
« Tracepoints may be conditional
e 3 types:

« Slow tracepoints

- Fast tracepoints
« Static tracepoints

GDB User Space/Kernel Tracepoints

GDB fast tracepoints

* Implemented using a jump instead of a trap

» Conditions and actions specified using
expressions

» Expressions translated into bytecode

« Conditions bytecode is converted to native code
to increase performance

 Actions bytecode is interpreted when the
tracepoint is hit

GDB User Space/Kernel Tracepoints m

GDB fast tracepoints architecture

- Remote Serial | GDBServer
Protocol trace buffer

In-Process Agentw o IPA
(Iibinproctrace.so)J trace buffer

GDB User Space/Kernel Tracepoints

KGTP module

« Equivalent of GDB tracepoints in kernel space
« Implements the GDB Remote Serial Protocol
« GDB and module communicate via /proc/gtp

« GDB kernel tracepoints implemented using
Kprobes

« Conditions and actions are executed using
bytecode

« Native code not supported
6 GDB User Space/Kernel Tracepoints

KGTP architecture

GDB User Space/Kernel Tracepoints $

Tracepoint compiled actions

* Forty opcodes in the bytecode language

« Some of them are not supported in the
translator, including tracing instructions

« Added tracing instructions support

* Implementation of native code functions is the
same as those used with conditions

» Executing native code should improve

performance
GDB User Space/Kernel Tracepoints

KGTP Native Code Support

* The bytecode to native code translation
mechanism was ported to KGTP module.

 Conditions and actions converted to native code
» Feature still under development

GDB User Space/Kernel Tracepoints m

Results: conditions

Slow Tracepoints/Simple condition > 10 minutes!

Native Code 456 s 91 ns

Native Code 5.74 s 115 ns

10

GDB User Space/Kernel Tracepoints

Results: actions

Simple Action Bytecode 0.87 s 2175 us
Complex Action Bytecode 1.23 s 3.075 s

1 GDB User Space/Kernel Tracepoints

Future Development

Remote Serial
Protocole

|

[In-Process Agentw

(Iibinproctrace.so)J

|

New Fast Tracepoints architecture

v

UST buffers

12

GDB User Space/Kernel Tracepoints

Future Development

/proc/gtp

New KGTP architecture

13

GDB User Space/Kernel Tracepoints

Conclusion

« GDB tracepoints provide a quick solution to
trace in user space and kernel mode

« Some improvements are needed to take
advantage of native code performance

e UST and LI
alternative

ng efficient buffers are a possible

14

GDB User Space/Kernel Tracepoints m

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

