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GDB tracepoints

« Debug a program without interrupting it

 Locations in the program to which data collecting probes
are associated

 Collected data: $regs, $args, user defined expressions...
« Tracepoints may be conditional
e 3 types:

« Slow tracepoints

- Fast tracepoints
« Static tracepoints
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GDB fast tracepoints

* Implemented using a jump instead of a trap

» Conditions and actions specified using
expressions

» Expressions translated into bytecode

« Conditions bytecode is converted to native code
to increase performance

 Actions bytecode is interpreted when the
tracepoint is hit
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GDB fast tracepoints architecture

- Remote Serial | GDBServer
Protocol trace buffer

In-Process Agentw o IPA
(Iibinproctrace.so)J trace buffer

GDB User Space/Kernel Tracepoints




KGTP module

« Equivalent of GDB tracepoints in kernel space
« Implements the GDB Remote Serial Protocol
« GDB and module communicate via /proc/gtp

« GDB kernel tracepoints implemented using
Kprobes

« Conditions and actions are executed using
bytecode

« Native code not supported
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KGTP architecture
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Tracepoint compiled actions

* Forty opcodes in the bytecode language

« Some of them are not supported in the
translator, including tracing instructions

« Added tracing instructions support

* Implementation of native code functions is the
same as those used with conditions

» Executing native code should improve

performance
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KGTP Native Code Support

* The bytecode to native code translation
mechanism was ported to KGTP module.

 Conditions and actions converted to native code
» Feature still under development
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Results: conditions

Slow Tracepoints/Simple condition > 10 minutes!

Native Code 456 s 91 ns

Native Code 5.74 s 115 ns
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Results: actions

Simple Action Bytecode 0.87 s 2175 us
Complex Action  Bytecode 1.23 s 3.075 s
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Future Development

Remote Serial
Protocole

|

[In-Process Agentw

(Iibinproctrace.so)J

|

New Fast Tracepoints architecture

v

UST buffers
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Future Development

/proc/gtp

New KGTP architecture
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Conclusion

« GDB tracepoints provide a quick solution to
trace in user space and kernel mode

« Some improvements are needed to take
advantage of native code performance

e UST and LI
alternative

ng efficient buffers are a possible
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