State History Storage In
Disk-based Interval Trees

Mid-project update

ﬂ

Alexandre Montplaisir
Michel Dagenais

) December 8, 2010
Ecole Polytechnique, Montreal

Ccontents

Overview

e State system
* Current method, shortcomings
* Proposed solution

State History functionalities
External API

Design variants

Future work

Conclusion

State History Storage in Disk-based Interval Trees 2/13

State system In trace viewers

* Trace viewers need to be able to re-create the
complete state the machine was in, at any
given point in a trace.

o State information includes:
* Running processes
e Open file descriptors
« State of CPUs, block devices, ...
* eftc.

State History Storage in Disk-based Interval Trees 3/13

Current method: checkpoints

/ ‘ State system

* Checkpoints stored in memory

 Number/frequency of checkpoints:
trade-off between speed and space usage

o Scalability is a problem

State History Storage in Disk-based Interval Trees 4/13

Proposed alternative:
the State History

e State information stored
as Intervals

T « Based on disk

e Fixed-size nodes

/\ (multiple of disk sector)

 Reading only one

branch is required to
rebuild the state at a

given time.

State History Storage in Disk-based Interval Trees 5/13

State History functionalities

TMF Event Parser
State-changing events

S5tate History system

State History Interface
External AP!

Building the tree 1

Current State
Used to build the History

l

IState History Tree
| File on disk

State History Storage in Disk-based Interval Trees 6/13

State History functionalities

TMF State System

Querigs

State History system
State History Interface

External AP

||

Current State
Contains the "Current State" at

Querylng the tree the gueried time
(offline trace) l T

IState History Tree
| File on disk

State History Storage in Disk-based Interval Trees 7/13

State History functionalities

Live trace reading

TMF Event Parser TMF State System

State-changing events Queries

S5tate History system

State History Interface

External AP!

"Builder" State

Contains the state at the
"tp" of the stream

Current State
Contains the state at the
gueried ome

State History Tree

| File on disk

State History Storage in Disk-based Interval Trees

8/13

External API

Basic methods:

* ModifyAttribute(attribute, value, timestamp)
* Query(attribute, timestamp), returns the value

But it also allows for more nifty stuff:
* Get next/prev. state change(attrib., timestamp),

returns the next/previous state or timestamp of that
change

State History Storage in Disk-based Interval Trees 9/13

Design variants

Find optimal Block size & Max. nb of children per node

Storing intervals at all levels vs. Storing only In leafs
Using disjointed nodes vs. overlapping ones (R-Trees)

Sorting the intervals in a node when we close it

Sorting the nodes/blocks in the file once we're done
writing

State History Storage in Disk-based Interval Trees 10/13

Future work

Implement the complete State History system (DONE)
Connect into TMF's event parser (ONGOING)
Return state queries information to TMF (TODO)

Test different implementation and design variants,
benchmark, compare (TODO)

Add support for re-opening existing History files
(Nice to have)

Fix bugs!

State History Storage in Disk-based Interval Trees 11/13

Conclusion

This new storage algorithm:

» Solves the scalabllity problem

* Generic
Will not require modifications if we add new states
* Allows streaming

* Allows dependency analysis

State History Storage in Disk-based Interval Trees 12/13

Thank you

Questions?

State History Storage in Disk-based Interval Trees 13/13

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

