
State History Storage in
Disk-based Interval Trees

Mid-project update

Alexandre Montplaisir
Michel Dagenais

December 8, 2010
École Polytechnique, Montreal



2/13State History Storage in Disk-based Interval Trees

Contents

● Overview
● State system
● Current method, shortcomings
● Proposed solution

● State History functionalities

● External API

● Design variants

● Future work

● Conclusion



3/13State History Storage in Disk-based Interval Trees

State system in trace viewers

● Trace viewers need to be able to re-create the 
complete state the machine was in, at any 
given point in a trace.

● State information includes:
● Running processes
● Open file descriptors
● State of CPUs, block devices, ...
● etc.



4/13State History Storage in Disk-based Interval Trees

Current method: checkpoints

● Checkpoints stored in memory
● Number/frequency of checkpoints:

trade-off between speed and space usage
● Scalability is a problem



5/13State History Storage in Disk-based Interval Trees

Proposed alternative:
the State History

● State information stored 
as intervals

● Based on disk
● Fixed-size nodes 

(multiple of disk sector)
● Reading only one 

branch is required to 
rebuild the state at a 
given time.



6/13State History Storage in Disk-based Interval Trees

State History functionalities

Building the tree



7/13State History Storage in Disk-based Interval Trees

State History functionalities

Querying the tree
(offline trace)



8/13State History Storage in Disk-based Interval Trees

State History functionalities

Live trace reading



9/13State History Storage in Disk-based Interval Trees

External API

Basic methods:
● ModifyAttribute(attribute, value, timestamp)
● Query(attribute, timestamp), returns the value

But it also allows for more nifty stuff:
● Get next/prev. state change(attrib., timestamp),

returns the next/previous state or timestamp of that 
change 



10/13State History Storage in Disk-based Interval Trees

Design variants

● Find optimal Block size & Max. nb of children per node

● Storing intervals at all levels vs. Storing only in leafs

● Using disjointed nodes vs. overlapping ones (R-Trees)

● Sorting the intervals in a node when we close it

● Sorting the nodes/blocks in the file once we're done 
writing



11/13State History Storage in Disk-based Interval Trees

Future work

● Implement the complete State History system (DONE)

● Connect into TMF's event parser (ONGOING)

● Return state queries information to TMF (TODO)

● Test different implementation and design variants, 
benchmark, compare (TODO)

● Add support for re-opening existing History files
(Nice to have)

● Fix bugs!



12/13State History Storage in Disk-based Interval Trees

Conclusion

This new storage algorithm:
● Solves the scalability problem
● Generic

Will not require modifications if we add new states
● Allows streaming
● Allows dependency analysis



13/13State History Storage in Disk-based Interval Trees

Thank you

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

