Trace-Directed Modelling
Mid-Project Meeting Report

Timothy C. Lethbridge

CRUuiSE (Complexity Reduction in Software Engineering) Research Group

University of Ottawa

Dec 8, 2010

Dec 2010 - 1
- uOttawa

Team members and what they are
doing

All team members

— Spent a lot of time learning LTTng, code generation framework,
Papyrus tool

Sultan Eid
— Masters

— Key initial task: Trace case specification and code generation
from models

Hamoud Aljamaan
— PhD
— Successfully completed comprehensive exam
— Key tasks:
« Usability of trace specifications
» Making trace results visible in model

Some team members on other projects are supporting the work

Dec 2010 - 2
uOttawa

Key recent progress

Draft specification of a language for specifying tracing
in a UML model

— UML already has several ‘add on’ languages
« OCL
« ALF Action language (under development)
— We are adding another

How would this be used?
— Either

 Direct the code generator to inject trace code ready
for later activation

* Create a separate trace application that can
instrument a system already installed

Dec 2010-3
- uOttawa

The following slides represent a
proposal that can be easily changed

Discussion is welcome

We are not yet committed to any particular
— Syntax
— Semantics
— Architecture

Dec 2010 -4
- uOttawa

Prior research we built on:
TraceSQL Declarative Tracepoints

SQL-like language for writing trace-injection
applications

— Dynamically instrument the target system when
loaded

— Borrows concepts from aspect-oriented technology

Reference

— Q. Cao, T. Abdelzaher, J. Stankovic, K. Whitehouse, L. Luo, "Declarative
Tracepoints: A Programmable and Application Independent Debugging System
for Wireless Sensor Networks", SenSys’08

General TraceSQL syntax
— TRACE {...} FROM {...} EXECUTE {...} WHERE {...}

Dec 2010 -5
uOttawa

TraceSQL Declarative Tracepoints 2

Examples
INTEGER @numYields = 0;
TRACE yield() FROM syscall.c EXECUTE {
@num_yields++;
}
WHERE {
READ msend->lock FROM radio.c ==

}

// Write the number of yields in 60s periods 10 times (i.e. 10 mins)
TRACE PERIOD 60s FOR 10 EXECUTE {

RECORD @numYields;

@numYelds = 0;

}
. uOttawa

Weaknesses of TraceSQL
Not object-oriented (l.e. UML/C++ compatible)

Over-specialized for embedded sensor device operating
systems like LiteOS

Not open source apparently

Ugly syntax with all-caps
— | don’t think SQL is a good basis

Dec 2010 -7
- uOttawa

How we propose to adapt TraceSQL
concepts for model-oriented tracing

The from clause is replaced by placing trace statements inside
descriptions of the matching model elements

class X {
trace method1();
execute {
record(“method1 called”);

}

Simplified syntax for tracing in classes
class [classpattern] {
trace {[traceltem]” } | traceltem
[execute {[executeltem]* } | executeltem]
[where {[precondition]* }]?

}

Tracing in state machines also available S
| uOttawa

General architecture for model-level
tracing specifications

Operates in the context of full model-driven development
— Generation of the system from models
— Models have classes, state machines
— ‘Action Language’ C++ methods can be interspersed

UML model elements enhanced with trace specifications

— These can be written at design time and maintained in a library
for later use

e Can be activated at run time

— Alternatively, when debugging a system, go to the model and
specify new model-level tracing

Code generator inserts tracepoints compatible with GDB, UST etc.

At run time GDB / UST tracepoints execute what is specified
— Output tagged with model element IDs from the original model, to

allow analysis at the model level N
uOttawa

Our specific approach and
architecture

In process of making open source in GoogleCode under MIT
License

We are writing everything in
— JET templates for code generation
— Model driven tools UML/Umple for everything else

- Because
2 It speeds our work
1 We want to ‘eat our own dogfood’

« But Umple is just a tool that generates pure Java
1 So if later users don’t want to use Umple, they don'’t need to
Thorough test-driven development

Runs on command line or plugs into any Eclipse-based modeling
tool

— Generates Papyrus XMl
— Full integration with Papyrus will be done later

Dec 2010 - 10
- uOttawa

Details of model-level tracing syntax:
Basic tracing of a method in class X

When m1() is called, output “X” into the trace, along with tags
indicating the model class X and m1()

kM,

trace m1() execute “x7;
Or

trace m1() execute record(“x”);
Or

trace m1() execute {record(“x”);}

In general the {} can be left out unless there are multiple items

Can leave out ‘execute’ to just get a record of the name of the item
traced

trace m1();

Dec 2010 - 11
uOttawa

Multiple trace items and conditional
tracing

When m2 or m3 called, print x and the result of the
method

trace {m2(); m3();} execute {record(“x”,result);}

When m4 called, print y provided the where condition is
true

— Note that where clause statements represent
preconditions

trace m4() execute “y” where attr7>5;

Dec 2010 - 12
- uOttawa

Expanding and limiting what is traced

Pattern matching
trace m*() ...

Tracing when a certain value is returned by a method
trace m5()<5 ...

Tracing method exit only (otherwise traces entry+exit)
trace exit m6() ...

Tracing method entry only
trace entry mo6()

Tracing other things only in the control flow (between entry and
exit of a method)

trace cflow m7() {class Y {trace m8(); m9();}}

Dec 2010 - 13
- uOttawa

Tracing when attr1 changes

trace attr1 ...
Or

trace setAttr1() ...

Dec 2010 - 14
uOttawa

More attribute tracing

Trace any time attr2 is set to a value exceeding 5
trace attr2 > 5 ...

Trace any sets of attr3 to value 7
trace attr3 ==

Tracing any time an attribute is accessed
trace getAttr4() ...

Dec 2010 - 15
uOttawa

Tracing associations

Trace any changes to association assoc1
trace assoc1 ...

Trace changes to assoc1 such that the cardinality
becomes 0

trace cardinality(assoc1) ==

Dec 2010 - 16
uOttawa

Tracing based on time or occurrences

Trace the first 100 changes to an attribute
trace attr8 for 100 ...
 Afterwards, this trace directive is ignored

Print out attr3 every 30ms
trace period 30ms execute attr3

Trace changes to attr4 for 12ms
trace attr4 during 12ms ...
 Afterwards, this trace directive is ignored

Dec 2010 - 17
- uOttawa

Trace until a condition becomes true

Trace changes to attr5 until attr6 is set to a value > 3
— even if the condition becomes false again afterwards

trace attr5 until attr6>3 ...

The above can be combined

— Trace up to 100 calls to method1, but stop tracing if it
returns a value less than zero

trace method1() for 100 until method1()<0

Dec 2010 - 18
- uOttawa

Named trace cases

You can name a set of tracing rules
— For activating:
At a specific point in time
* When a certain condition becomes true

— And deactivating

Conceptually, the previous slides referred to a
default unnamed trace case

— e.g. Initially loaded

Dec 2010 - 19
- uOttawa

Named tracecase declarations

The same name appearing in multiple model entities adds to the
trace case

— This is ‘mixin’ capability
tracecase tc1 {
trace attré execute “a6”

}

tracecase tc1 {
trace attr7 execute {"a7”; count++;}

}

tracecase tc1 {
trace attré execute count--;

}

Dec 2010 - 20
uOttawa

Tracecases can have local attributes

They are accessible inside it and local to each specific
activation

tracecase tc2 {
Integer i;
String s;

}

Dec 2010 - 21
uOttawa

Execte clause actions:
Recording output

Any list of expressions or single expression can follow the record
keyword

— Generates code that causes LTTng or UST to output CTF-
compatible data

Record a constant
record “constant”;

Record the value of an attribute
record attr1;
» The record keyword can be omitted above for single items

Record several things
record(“Got here”, attr1, attr4)

Dec 2010 - 22
- uOttawa

Execute clause actions for activation

Activation of a trace case
activate tc1

Activate a trace case in the context the instance that
matched the trace clause

activate tc3 on this

 Until you do the above, tracing would have been
done on all objects of a given class

Activate a trace case in the context of the current
thread

activate tc4 on thisThread
» Without this, tracing is done in all threads

Dec 2010 - 23
- uOttawa

More activation controls

Activate a trace case in the context of a particular
object or set of objects

activate tc5 on assoc3

Deactivate a trace case in all contexts
deactivate tc2

Activate a trace case for a period of time
activate tc3 for 1s

Dec 2010 - 24
uOttawa

More execute clause statements

activate a trace case until a condition becomes true
activate tc4 until attr6>4

Combining various elements
activate tc5 on this during 12ms

Set an attribute
— Modifies the functioning of the base system
attr/ =5

Dec 2010 - 25
uOttawa

Tracing transitions in a state machine

Example where a state machine is embedded in a class
class c1 {
sm1 {

// trace all occurrences of ev1 that effect the state

trace ev1 execute “ev1’;

state1 {
/[trace something only when in state1
trace attr3 ...

// trace a particular transition here by specifying the event
trace ev2 ...
} /] end of state
} I/ end of state machine
} I/ end of enclosing class

Dec 2010 - 26
uOttawa

More trace machine tracing examples

Tracing any change of state
class c1 {trace sm1;}

Tracing a pure state machine that can be plugged into any class
statemachine sm2 {

/[trace ev3 in this state machine
trace ev3;

trace entry;

statea {

trace {attr3; evd; m6();} execute {activate tc7;}
trace exit;

Dec 2010 - 27
- uOttawa

Partial Specification-Time
Metamodel for Tracing

E TraceCase

name : String

E ClassToTrace

E Precondition

\ 1

E] ClassltemSetToTrace

E ClassltemToTrace

-ﬂ""”f

*

& Executeltem

duration : Integer
repeats : Integer

Dec 2010 - 28
. uOttawa

Directions in this aspect of the
research

Mostly conceptual so far

— Although the parsing and code generation infrastructure is primed
for adding the trace language

Step 1: Review the above with stakeholders to refine

Step 2: Prototype it
— Use test-driven development
« Complete parser
* Inject code in code generator
— Hope to have a concrete demo by mid-year meeting

Other activities:
— Render trace results back into the model

Dec 2010 - 29
uOttawa

Longer-range objectives

Conduct empirical studies
— Usability of the language

Try on significantly sized UML models

Reverse engineer real systems to models
— Then trace systems using our approach

Dec 2010 - 30
- uOttawa

Other ideas to extend and integrate
with other subprojects

Integrate with live tracing

— Abstract results to an instance-level view in the
modeling tool

Integrate with trace abstraction work
— Abstract the traces back to models

Dec 2010 - 31
uOttawa

