
Dec 2010 - 1

Trace-Directed Modelling
Mid-Project Meeting Report

Timothy C. Lethbridge

CRuiSE (Complexity Reduction in Software Engineering) Research Group

University of Ottawa

Dec 8, 2010

http://www.site.uottawa.ca/~tcl

Dec 2010 - 2

Team members and what they are
doing

All team members
– Spent a lot of time learning LTTng, code generation framework,

Papyrus tool
Sultan Eid

– Masters
– Key initial task: Trace case specification and code generation

from models
Hamoud Aljamaan

– PhD
– Successfully completed comprehensive exam
– Key tasks:

• Usability of trace specifications
• Making trace results visible in model

Some team members on other projects are supporting the work

Dec 2010 - 3

Key recent progress

Draft specification of a language for specifying tracing
in a UML model
– UML already has several ‘add on’ languages

• OCL
• ALF Action language (under development)

– We are adding another

How would this be used?
– Either

• Direct the code generator to inject trace code ready
for later activation

• Create a separate trace application that can
instrument a system already installed

Dec 2010 - 4

The following slides represent a
proposal that can be easily changed

Discussion is welcome

We are not yet committed to any particular
– Syntax
– Semantics
– Architecture

Dec 2010 - 5

Prior research we built on:
TraceSQL Declarative Tracepoints

SQL-like language for writing trace-injection
applications
– Dynamically instrument the target system when

loaded
– Borrows concepts from aspect-oriented technology

Reference
– Q. Cao, T. Abdelzaher, J. Stankovic, K. Whitehouse, L. Luo, "Declarative

Tracepoints: A Programmable and Application Independent Debugging System
for Wireless Sensor Networks", SenSys’08

General TraceSQL syntax
– TRACE {...} FROM {...} EXECUTE {...} WHERE {...}

Dec 2010 - 6

TraceSQL Declarative Tracepoints 2
Examples

INTEGER @numYields = 0;
TRACE yield() FROM syscall.c EXECUTE {
 @num_yields++;
}
WHERE {
 READ msend->lock FROM radio.c == 1
}

// Write the number of yields in 60s periods 10 times (i.e. 10 mins)
TRACE PERIOD 60s FOR 10 EXECUTE {
 RECORD @numYields;
 @numYelds = 0;
}

Dec 2010 - 7

Weaknesses of TraceSQL

Not object-oriented (I.e. UML/C++ compatible)

Over-specialized for embedded sensor device operating
systems like LiteOS

Not open source apparently

Ugly syntax with all-caps
– I don’t think SQL is a good basis

Dec 2010 - 8

How we propose to adapt TraceSQL
concepts for model-oriented tracing

The from clause is replaced by placing trace statements inside
descriptions of the matching model elements
 class X {
 trace method1();
 execute {
 record(“method1 called”);
 }

Simplified syntax for tracing in classes
class [classpattern] {

 trace {[traceItem]* } | traceItem
 [execute {[executeItem]* } | executeItem]

 [where {[precondition]* }]?
 }

Tracing in state machines also available

Dec 2010 - 9

General architecture for model-level
tracing specifications

Operates in the context of full model-driven development
– Generation of the system from models
– Models have classes, state machines
– ‘Action Language’ C++ methods can be interspersed

UML model elements enhanced with trace specifications
– These can be written at design time and maintained in a library

for later use
• Can be activated at run time

– Alternatively, when debugging a system, go to the model and
specify new model-level tracing

Code generator inserts tracepoints compatible with GDB, UST etc.

At run time GDB / UST tracepoints execute what is specified
– Output tagged with model element IDs from the original model, to

allow analysis at the model level

Dec 2010 - 10

Our specific approach and
architecture

In process of making open source in GoogleCode under MIT
License

We are writing everything in
– JET templates for code generation
– Model driven tools UML/Umple for everything else

• Because
❏ It speeds our work
❏ We want to ‘eat our own dogfood’

• But Umple is just a tool that generates pure Java
❏ So if later users don’t want to use Umple, they don’t need to

Thorough test-driven development
Runs on command line or plugs into any Eclipse-based modeling

tool
– Generates Papyrus XMI
– Full integration with Papyrus will be done later

Dec 2010 - 11

When m1() is called, output “X” into the trace, along with tags
indicating the model class X and m1()

trace m1() execute “x”;
Or

trace m1() execute record(“x”);
Or

trace m1() execute {record(“x”);}

In general the {} can be left out unless there are multiple items

Can leave out ‘execute’ to just get a record of the name of the item
traced

trace m1();

Details of model-level tracing syntax:
Basic tracing of a method in class X

Dec 2010 - 12

When m2 or m3 called, print x and the result of the
method

trace {m2(); m3();} execute {record(“x”,result);}

When m4 called, print y provided the where condition is
true
– Note that where clause statements represent

preconditions

trace m4() execute “y” where attr7>5;

Multiple trace items and conditional
tracing

Dec 2010 - 13

Expanding and limiting what is traced
Pattern matching

trace m*() …

Tracing when a certain value is returned by a method
trace m5()<5 …

Tracing method exit only (otherwise traces entry+exit)
trace exit m6() …

Tracing method entry only
trace entry m6()

Tracing other things only in the control flow (between entry and
exit of a method)

trace cflow m7() {class Y {trace m8(); m9();}}

Dec 2010 - 14

Tracing when attr1 changes

trace attr1 …
Or

trace setAttr1() …

Dec 2010 - 15

More attribute tracing

Trace any time attr2 is set to a value exceeding 5
trace attr2 > 5 …

Trace any sets of attr3 to value 7
trace attr3 == 7 …

Tracing any time an attribute is accessed
trace getAttr4() …

Dec 2010 - 16

Tracing associations

Trace any changes to association assoc1
trace assoc1 …

Trace changes to assoc1 such that the cardinality
becomes 0

trace cardinality(assoc1) == 0 …

Dec 2010 - 17

Tracing based on time or occurrences

Trace the first 100 changes to an attribute
trace attr8 for 100 …
• Afterwards, this trace directive is ignored

Print out attr3 every 30ms
trace period 30ms execute attr3

Trace changes to attr4 for 12ms
trace attr4 during 12ms …
• Afterwards, this trace directive is ignored

Dec 2010 - 18

Trace until a condition becomes true

Trace changes to attr5 until attr6 is set to a value > 3
– even if the condition becomes false again afterwards

trace attr5 until attr6>3 …

The above can be combined
– Trace up to 100 calls to method1, but stop tracing if it

returns a value less than zero

trace method1() for 100 until method1()<0

Dec 2010 - 19

Named trace cases

You can name a set of tracing rules
– For activating:

• At a specific point in time
• When a certain condition becomes true

– And deactivating

Conceptually, the previous slides referred to a
default unnamed trace case
– e.g. initially loaded

Dec 2010 - 20

Named tracecase declarations
The same name appearing in multiple model entities adds to the

trace case
– This is ‘mixin’ capability

tracecase tc1 {
 trace attr6 execute “a6”
}

tracecase tc1 {
 trace attr7 execute {“a7”; count++;}
}

tracecase tc1 {
 trace attr6 execute count--;
}

Dec 2010 - 21

They are accessible inside it and local to each specific
activation

tracecase tc2 {
 Integer i;
 String s;
}

Tracecases can have local attributes

Dec 2010 - 22

Execte clause actions:
Recording output

Any list of expressions or single expression can follow the record
keyword
– Generates code that causes LTTng or UST to output CTF-

compatible data

Record a constant
record “constant”;

Record the value of an attribute
record attr1;
• The record keyword can be omitted above for single items

Record several things
record(“Got here”, attr1, attr4)

Dec 2010 - 23

Execute clause actions for activation

Activation of a trace case
activate tc1

Activate a trace case in the context the instance that
matched the trace clause

activate tc3 on this
• Until you do the above, tracing would have been

done on all objects of a given class

Activate a trace case in the context of the current
thread

activate tc4 on thisThread
• Without this, tracing is done in all threads

Dec 2010 - 24

More activation controls

Activate a trace case in the context of a particular
object or set of objects

activate tc5 on assoc3

Deactivate a trace case in all contexts
deactivate tc2

Activate a trace case for a period of time
activate tc3 for 1s

Dec 2010 - 25

activate a trace case until a condition becomes true
activate tc4 until attr6>4

Combining various elements
activate tc5 on this during 12ms

Set an attribute
– Modifies the functioning of the base system

attr7 = 5

More execute clause statements

Dec 2010 - 26

Tracing transitions in a state machine
Example where a state machine is embedded in a class

class c1 {
 sm1 {
 // trace all occurrences of ev1 that effect the state
 trace ev1 execute “ev1”;
 state1 {
 // trace something only when in state1
 trace attr3 …

 // trace a particular transition here by specifying the event
 trace ev2 …
 } // end of state
 } // end of state machine
} // end of enclosing class

Dec 2010 - 27

More trace machine tracing examples

Tracing any change of state
class c1 {trace sm1;}

Tracing a pure state machine that can be plugged into any class
statemachine sm2 {
 // trace ev3 in this state machine
 trace ev3;
 trace entry;
 statea {
 trace {attr3; ev5; m6();} execute {activate tc7;}
 trace exit;
 }
}

Dec 2010 - 28

Partial Specification-Time
Metamodel for Tracing

Dec 2010 - 29

Directions in this aspect of the
research

Mostly conceptual so far
– Although the parsing and code generation infrastructure is primed

for adding the trace language

Step 1: Review the above with stakeholders to refine

Step 2: Prototype it
– Use test-driven development

• Complete parser
• Inject code in code generator

– Hope to have a concrete demo by mid-year meeting

Other activities:
– Render trace results back into the model

Dec 2010 - 30

Longer-range objectives

Conduct empirical studies
– Usability of the language

Try on significantly sized UML models

Reverse engineer real systems to models
– Then trace systems using our approach

Dec 2010 - 31

Other ideas to extend and integrate
with other subprojects

Integrate with live tracing
– Abstract results to an instance-level view in the

modeling tool

Integrate with trace abstraction work
– Abstract the traces back to models

