
A framework for Automated Fault Identification

Béchir Ktari
Hashem Waly

Département d’informatique et de génie logiciel
Faculté des Sciences et de Génie
Université Laval, Québec, Canada

December 8, 2010
Montréal, Canada

Objectives

I Automating the detection of suspecious behaviors,
performance degradation, and software bugs, in LTTng traces.

I Avoid to affect the performance of the system being analyzed.
I Integration within a software development environment

(Eclipse).

Expected results

I An Eclipse plug-in editor for the definition of scenarios.
I An Eclipse plug-in engine that automatically detect faults in an

abstracted version of LTTng traces.

Work progress
I Continuous reviews of the state of the art.
I Learning and exploring Eclipse plug-in framework (exchanges

with Ericsson team).
I Definition of a framework for the detection of scenario-based

properties :
I Rigourous definition of a language.
I Definition of typing rules.
I Use of ANTLR parser generator.
I Implementation of an editor for the definition of scenarios.
I Implementation of a checker and a detection engine (GUI).
I The developed plug-in is connected with Ericsson’s one.
I We propose an interface for building plug-ins on top of our

framework.
I Rq: The developed framework is general as it could be used

with any types of input traces. Furthermore, the proposed
scenario language can be used with properties of different
levels of abstraction. Hence, we anticipate to reuse this
framework in the second phase of the project, i.e. high-level
properties identification.

Outline

Introduction

Proposed Language
Characteristics
Syntax
Examples
Typing rules

Detection Engine

Patterns
Race conditions on files
Inefficient I/O
Excessive Swapping

Conclusion

Outline

Introduction

Proposed Language
Characteristics
Syntax
Examples
Typing rules

Detection Engine

Patterns
Race conditions on files
Inefficient I/O
Excessive Swapping

Conclusion

Characteristics

1. Core langage :
I Filter predicates : The language is composed of atomic parts

(predicates). The smallest predicate is the filter which filters a
specific field in the event (channel, process name, etc). Users
can specify several filters on the different fields of the event
related using relational operators.

I Event filters : Grouping filters into the event filter. Tagging the
filter with an id so it can be referenced by other filters.

I Scenarios : Combining event filters together into a scenario.
I Scenarios as abstract events : Through the parameters of a

scenario, it could be used as a type in other scenarios.
I Group of scenarios : Combining scenarios into a group of

scenarios.

Methodology (cont.)

2. Beyond the core language : The scenario and statement
options, are a set of optional clauses used to give directions to
the different modules of the system. We have implemented
the following default options, but there is no constraint that the
options could be extensible :

I Statement transition : it contains four different values (default,
consuming, non-consuming, and un-winding).

I Priority : it represents the importance of the statement in the
scenario being detected. It takes three values: low, medium,
and high. It is currently used as part of the IDMEF messages.

I Description : textual description of the scenario or the
statement that is being detected. It is used as part of IDMEF
messages.

I Instances Limit : maximum number of created scenario
instances.

Methodology (cont.)

3. Actions rules : The action clause, is used to define the
appropriate action to be taken when a given group, scenario,
or event is detected. User can define any external functions
using the technique explained later, and use them as an action
to a specific detection fact. Along with the external functions,
we have implemented the following default functions:

I Display: to display the detected events graphically in the user
interface.

I IDMEF: to create XML-based IDMEF messages, and send
them to a remote host.

I Command: to execute a given Linux commands on the shell, it
could be useful for example to shut down the computer, or
close a specific port in a response to a detected attack.

Outline

Introduction

Proposed Language
Characteristics
Syntax
Examples
Typing rules

Detection Engine

Patterns
Race conditions on files
Inefficient I/O
Excessive Swapping

Conclusion

BNF of the proposed language

sfile ::= include∗ ext∗ type∗ spec? group∗ action∗

include ::= include file ;
ext ::= extern τ f (τ1, . . . , τn) ;
group ::= group g { spec }
spec ::= var∗ pred∗ evtdef∗ scenario∗

type ::= type t = τ ;
var ::= var x = exp(, y = exp)∗ ;
pred ::= predicate p (x1, . . . , xn) { exp } ;
evtdef ::= eventdef e where (exp) ;
scenario ::= scenario s [option∗]? (x1, . . . , xn) as (exp1, . . . , expn) { statement∗ }
statement ::= (!)? event e [option∗]? (: etype)? where (exp)? ;

| within [option∗]? ((exp1, exp2) | (exp)) { statement∗ }
| repeat [option∗]? (exp) { statement∗ }

option ::= (o1 = v1, . . . , on = vn)
action ::= action (exp) {f (exp1, . . . , expn)

∗}

exp ::= c | x | exp.l | (exp) | f (exp1, . . . , expn) | unop exp | exp1 binop exp2
unop ::= ! | -
binop ::= exp1 logop exp2 | exp1 eqop exp2 | exp1 relop exp2 | exp1 arop exp2

| exp1 + exp2
logop ::= && | ||
eqop ::= == | !=
relop ::= = | <= | > | <
arop ::= - | * | /

Outline

Introduction

Proposed Language
Characteristics
Syntax
Examples
Typing rules

Detection Engine

Patterns
Race conditions on files
Inefficient I/O
Excessive Swapping

Conclusion

Main characteristics of the core language

I Filters :
(timestamp == 26126.7872610);
(channel == " kerne l ") && (pname == " chroot ") ;

I Event filters :
event e where (timestamp < 26126 && pname == " f i r e f o x ∗ " | | channel == " kerne l ") ;

I Scenarios :
scenario t e s t {

event e1 where (channel == " f s " && type == " open ") ;
event e2 where (channel == " f s " && type == " c lose " && pid == e1 . pid) ;

}

Main characteristics of the core language (cont.)

I Scenarios :
scenario t e s t {

event e1 where (channel == " f s " && type == " open ") ;
event e2 where (channel == " f s " && type == " c lose " && pid == e1 . pid) ;

}

I Abreviations :
eventdef open where (channel == " f s " && type == " open ") ;
eventdef c lose where (channel == " f s " && type == " c lose ") ;

scenario t e s t {
event e1 : open ;
event e2 : c lose where (pid == e1 . pid) ;

}

Main characteristics of the core language (cont.)

I Scenarios as atomic proposition :

extern bool f i l e (s t r i n g s) ;

eventdef s y s c a l l _ e n t r y where (channel == " kerne l " && type == " s y s c a l l _ e n t r y ") ;
eventdef s y s c a l l _ e x i t where (channel == " kerne l " && type == " s y s c a l l _ e x i t ") ;

eventdef open_core where (channel == " f s " && type == " open ") ;
eventdef chroot_core where (channel == " kerne l " && type == " chroot ") ;

scenario open (filename , pid , return_code) as
(e1 . content . filename , e3 . pid , e3 . content . return_code) {

event e1 : s y s c a l l _ e n t r y where (e1 . content . syscall_id == 5) ;
event e2 : open_core where (e2 . pid == e1 . pid) ;
event e3 : s y s c a l l _ e x i t where (e3 . pid == e2 . pid && e3 . content . return_code != −1);

}

scenario c h r o o t _ j a i l {
event chroot1 : s y s c a l l _ e n t r y where (chroot1 . content . syscall_id == 61) ;
event chroot2 : chroot_core where (chroot2 . pid == chroot1 . pid) ;
event chroot3 : open where (chroot3 . pid == chroot2 . pid && f i l e (chroot3 . filename)) ;

}

Main characteristics of the core language (cont.)

I Other constructs :
eventdef socket_create where (channel == " net " && type == " socket_create ") ;
eventdef socket_connect where (channel == " net " && type == " socket_connect ") ;
eventdef socket_send where (channel == " net " && type == " socke t_ca l l " && content . c a l l == 9) ;
eventdef socket_rece ive where (channel == " net " && type == " socke t_ca l l " &&

content . c a l l == 10) ;

var t imeout = 1 . 0 ;

scenario syn_f lood {
event syn1 : socket_create ;
event syn2 : socket_connect where (syn2 . pid == syn1 . pid) ;
event syn3 : socket_send where (syn3 . pid == syn2 . pid) ;
within (t imeout) {

! event e : socket_rece ive ;
}

}

Main characteristics of the core language (cont.)

I Other constructs :
var t h resho ld = 50;
var timeWindow = 2 . 0 ;

eventdef f s _ w r i t e where (channel == " f s " && type == " w r i t e ") ;
eventdef fs_access where (channel == " kerne l " && type == " s y s c a l l _ e n t r y " &&

content . syscall_id == 33) ;

scenario i n e f f i c i e n t _ I O {
event e1 : open ;
within (timeWindow) {

repeat (th resho ld) {
event e : access_ f i l e ;

}
}

}

Main characteristics of the core language (cont.)

I Other constructs :
var admFiles = [. . .] ;

scenario t e s t {
event e where (e . content . filename in admFiles) ;

}

Main characteristics of the core language (cont.)

I Group of scenarios :

include " sysF i l es . scn " ;

group Loca lPo l i cy {

scenario s1 {
. . .

}

scenario s2 {
. . .

}

. . .
}

Main characteristics of the advanced part

I Consuming and nonconsuming + attributes :

eventdef socket_create where (channel == " net " && type == " socket_create ") ;
eventdef socket_connect where (channel == " net " && type == " socket_connect ") ;
eventdef socket_send where (channel == " net " && type == " socke t_ca l l " && content . c a l l == 9) ;
eventdef socket_rece ive where (channel == " net " && type == " socke t_ca l l " &&

content . c a l l == 10) ;

var HIGH = 2 , MEDIUM = 1 , LOW = 0;

scenario syn_f lood
[p r i o r i t y = MEDIUM; descr = " Syn� f l ood�a t tack " ; i L i m i t = 5]
{

event syn1 [nc] : socket_create ;
event syn2 [c] : socket_connect where (syn2 . pid == syn1 . pid) ;
event syn3 [c] : socket_send where (syn3 . pid == syn2 . pid) ;
within (2 . 0) {

! event [c] e : socket_rece ive ;
}

}

Main characteristics of the rule part

I Rules :
action (t e s t i n g . i n e f f i c i e n t I O && s e c u r i t y . c h r o o t _ j a i l) {

d i sp lay (t e s t i n g . i n e f f i c i e n t I O . ∗) ;
}

action (s e c u r i t y . syn_f lood . $x) {
idmef ($x . pid) ;

}

action (s e c u r i t y . ∗ . ∗) {
command " ma i l t o : � . . . "

}

Scenario Editor - An eclipse plugin

Outline

Introduction

Proposed Language
Characteristics
Syntax
Examples
Typing rules

Detection Engine

Patterns
Race conditions on files
Inefficient I/O
Excessive Swapping

Conclusion

Type checker module

τ ::= int | string | bool | time | τ1 × . . . × τn → τ | { l1 : τ1, . . . , ln : τn }

I Typing environments :
I E = [x1 : τ1, . . . , xn : τn]
I TypeOf = [INT : int, IDENT : string,TIME : time]
I E′0 = [lttng : {trace : string, type : string, channel : string,

cpu : int, timestamp : time}]
I E0 = E′0 † (flat(E′0(lttng)))

I Sequents :
I E ` exp : τ
I E ` o : E′

Type rules

(evt1) E † [flat(E(etype))] ` exp : bool e < dom(E)
E ` (!)? event e (: etype)? (where exp)? : E † [e : {timestamp : time} ⊕ E(etype)]

(evt2) E ` exp : bool e < dom(E)
E ` (!)? event e (where exp)? : E † [e : E(lttng)]

(scn) E ` evtfilter∗ : E′ E′ ` exp1 : τ1 . . . E′ ` expn : τn s < dom(E)
E ` scenario s (x1, . . . , xn) as (exp1, . . . , expn) { evtfilter∗ } : E † [s : { x1 : τ1, . . . , xn : τn }]

(edef) E ` exp : bool e < dom(E)
E ` eventdef e where exp : E † [e : E(lttng)]

Scenario Editor - An eclipse plugin

Detection Engine

I The inputs to the detection engine are the pre-treated
scenario instances and the standardized low-level events.

I There is a difference between scenario prototypes which is
the original format of the given scenario, and the scenario
instances which is the executable running instance of the
scenario.

I For reasons of performance, the LTTng events are treated as
block of events.

I For the evaluation of different expressions, a complete
environment is used to keep the values of different statements
detected as well as the scenario parameters.

Detection Engine : How it works?

I Loop sequentially on all the events in the trace.
I Loop on all the scenario instances.
I Pass the event to the scenario instance :

I If the expression in the statement is evaluated to true, the
cursor associated with the scenario is incremented;

I in that case, if there is an action associated with the statement,
it is executed; otherwise, the event is displayed to the GUI or
sent as an IDMEF message to a remote client.

I if all the statements in the scenario are evaluated to true :
I the action associated with the scenario is executed;
I if the last statement of the scenario is non-consuming, the

scenario is deleted and removed from the array of scenarios;
otherwise the cursor is initialized and the detection continues
at the same scenario instance.

Detection Engine : Statement transitions
Statement transitions are given as options to the statements :

1. Default: The cursor is incremented, and if all the statements in
the scenario are evaluated to true, there is no instance
created, and the cursor is initialized to 0.

2. Consuming transition: the cursor is incremented in all
scenario instances of the same scenario prototype. There is
no scenario instance created. The cursor is incremented, and
the scenario moves form the current statement to the next
one.

3. Non-Consuming: The cursor is incremented, and another
instance of the same scenario is created.

4. Un-winding: This is a rollback transition. The cursor of the
scenario is initialized to the statement passed in the
unwinding transition (for example: uw=e1); in this case the
cursor is initialized to statement e1, and all the current
instances of the same scenario are deleted.

Detection Engine : the GUI

Detection Engine : the GUI

Patterns

In the following, we are considering a set of undesired behaviours
touching different fields like: security, performance, and software
bugs.

More precisely, we present three examples of such properties :

1. Race conditions on files.

2. Inefficient I/O.

3. Excessive Swapping.

and propose, for each one, a specification using our language.

Outline

Introduction

Proposed Language
Characteristics
Syntax
Examples
Typing rules

Detection Engine

Patterns
Race conditions on files
Inefficient I/O
Excessive Swapping

Conclusion

Race conditions on files

Race conditions is one example of File Permissions violations. It
occurs when a system or a device assumes to perform two or
more operations atomically while they are not. They are altered by
external events that may be occasionally or explicitly executed by
an attacker.

Race conditions on files (cont.)

i f (access (" / tmp / x " , W_OK) == 0) {
/ / a t t acke r thread
/ / u n l i n k (" / tmp / x ") ;
/ / a t t acke r thread
/ / syml ink (" / e tc / passwd " , " / tmp / x ") ;
i f ((fd = open (" / tmp / x " , O_WRONLY)) == −1) {

pe r ro r (" / tmp / x ") ;
return (0) ;

}
/ / w r i t e to the f i l e

}

Figure: Race conditions on files C code.

Race conditions on files (cont.)

S0start S1 S2

[file_sys(f1);]
link(f1,f2);

{save_fname(f1,f2);};

[same_pid();
same_fname(f2);]

unlink(f2);

[same_pid();
same_fname(f1);]

open(f2);

Figure: Race condition FSM.

Race conditions on files (cont.)

SYSCALL_DEFINE2(symlink ,
const char __user ∗ , oldname ,
const char __user ∗ , newname)

{
. . .
trace_mark (kernel , s y s c a l l _ l i n k , " f i lename %s " , newname) ;
. . .

}

Figure: Adding a marker in symlink system call.

Race conditions on files (cont.)

kerne l . s y s c a l l _ e n t r y : 137305.5091 (. / kernel_1) , 7914 , 7914 ,
. / r a ce_ v i o l a t i on , , 31269 , 0x0 ,
SYSCALL i p = 0xb809a430 ,
syscall_id = 83 [sys_syml ink+0x0 /0 x30]

#The added marker
kerne l . s y s c a l l _ l i n k : 137305.5101 (. / kernel_1) , 7914 , 7914 ,

. / r a ce_ v i o l a t i on , , 31269 , 0x0 ,
SYSCALL filename / e tc / passwd

kerne l . s y s c a l l _ e x i t : 137305.5302 (. / kernel_1) , 7914 , 7914 ,
. / r a ce_ v i o l a t i on , , 31269 ,
0x0 , USER_MODE r e t = 0

Figure: LTTng relevant link calls.

Race conditions on files script

extern bool f i l e _ s y s (s t r i n g f i l e) ;

/ / v a r i a b l e s d e f i n i t i o n .
var a c c _ f i l e = [" read " , " w r i t e " , " exec "] ;

/ / Types d e f i n i t i o n .
eventdef s y s l i n k where (channel == " kerne l " && type == " l i n k ") ;
eventdef sysun l i nk where (channel == " kerne l " && type == " u n l i n k ") ;
eventdef a c c _ f i l e where (channel == " f s " && type in a c c _ f i l e) ;

scenario sens_acc () {

event e1 : s y s l i n k [c] where (f i l e _ s y s (content . filename)) ;

event e2 : sysun l i nk [uw=" e1 "] where (content . filename == e1 . content . f i l e 1) ;

event e3 : a c c _ f i l e [nc] where (content . filename == e1 . content . f i l e 1) ;
}

action (sens_acc) {
d i sp lay (sens_acc . ∗) ;

}

Outline

Introduction

Proposed Language
Characteristics
Syntax
Examples
Typing rules

Detection Engine

Patterns
Race conditions on files
Inefficient I/O
Excessive Swapping

Conclusion

Inefficient I/O

One undesired property is having a single process written a big
small chunks of data to the disk in a small interval of time.

Inefficient I/O (cont.)

S0start S1 S2

small_chunk(fd);
{incr_counter();};

close(fd);
[same_pid()]

counter > limit &
time < interval
[same_pid();
same_fd();]

Figure: Writing small chunks of data to files.

Inefficient I/O script

/ / v a r i a b l e s d e f i n i t i o n .
var t imeout = 1000 , count = 100 , bytesCount = 10000;
var a c c _ f i l e = [" w r i t e " , " read " , " exec "] ;

/ / Types d e f i n i t i o n .
eventdef f i l e_open where (channel == " f s " && type == " open ") ;
eventdef f i l e _ c l o s e where (channel == " f s " && type == " c lose ") ;
eventdef f i l e _ a c c where (channel == " f s " && type in a c c _ f i l e) ;

scenario i n e f f i c i e n t _ i o () {

event e1 : f i l e_open [nc] ;

event e2 : f i l e _ c l o s e [uw=e1] content . fd == e1 . content . fd) ;

within (t imeout) {
repeat (count) {

event e4 : f i l e _ a c c [c] where (content . count<bytesCount) ;
}

}
}

action (i n e f f i c i e n t _ i o) {
d i sp lay (i n e f f i c i e n t _ i o . ∗) ;

}

Outline

Introduction

Proposed Language
Characteristics
Syntax
Examples
Typing rules

Detection Engine

Patterns
Race conditions on files
Inefficient I/O
Excessive Swapping

Conclusion

Excessive Swapping

Swapping operation is costly in terms of performance. Performing
many swap operations in a small interval of time could cause
"excessive swapping".

Excessive Swapping (cont.)

S0start S1 S2

[swap_operation();]
{ start_timer();

increase_count(); }

timeout;

[count >
threshold]

Figure: Excessive swapping FSM.

Excessive Swapping script

/ / Var iab les d e f i n i t i o n .
var swap_operations = [" swap_in " , " swap_out "] ;
var allowedSwaps = 10000 , t i m e I n t e r v a l = 500;

/ / Types d e f i n i t i o n .
eventdef swap where (channel == "mm" & type in swap_operations) ;

scenario excessive_swapping {

within (t i m e I n t e r v a l) {
repeat (allowedSwaps) {

event e : swap ;
}

}
}

action (excessive_swapping) {
d i sp lay (excessive_swapping . ∗) ;

}

Conclusion
1. We have presented a new declarative scenario description

language. The declarative approach of the language is simple
to use because the users are not concerned about
implementation details; they are only concerned about what to
be detected (events, scenarios, etc).

2. We assume that the proposed language supports the most
important features needed in a scenario description language
like : scenarios based on multiple events, real-time
constraints, counting, knowledge acquisition (as scenarios
could be used to defined other scenarios), variables definition,
etc.

3. We have to consider that the presented framework is a first
step toward more efficient tools for the automatic detection of
problematic behaviors.
In fact, we consider the output of our framework as what are
called in the literature low-level observation or facts. On top of
that framework, we can add more analysis based on such
observations (detected scenarios).

Future Work

1. Continue the implementation of the detection engine and
measure its performance against large and complex patterns.

2. Backward detection: it will be interesting if we can move
forward and backward in the traces : If an interesting event is
detected, move backward to see the possible reasons for the
given fact.

3. Enhance the performance of the engine by adding more
optimization to the scenario pre-processing or by parallelizing
the detection of scenarios.

4. Synchronize with other projects, mainly System Health project
and Trace Abstraction project.

5. Add to our framework streaming and live reading of a trace
features.

Thank you

Questions?

	Introduction
	Proposed Language
	Detection Engine
	Patterns
	Conclusion

