A framework for Automated Fault Identification

Béchir Kari
Hashem WaLy

Département d’'informatique et de génie logiciel
Faculté des Sciences et de Génie
Université Laval, Québec, Canada

December 8, 2010
Montréal, Canada

Objectives

» Automating the detection of suspecious behaviors,
performance degradation, and software bugs, in LTTng traces.

» Avoid to affect the performance of the system being analyzed.

» Integration within a software development environment
(Eclipse).

Expected results

» An Eclipse plug-in editor for the definition of scenarios.

» An Eclipse plug-in engine that automatically detect faults in an
abstracted version of LTTng traces.

Work progress

» Continuous reviews of the state of the art.

» Learning and exploring Eclipse plug-in framework (exchanges
with Ericsson team).

» Definition of a framework for the detection of scenario-based
properties :

» Rigourous definition of a language.

» Definition of typing rules.

» Use of ANTLR parser generator.

» Implementation of an editor for the definition of scenarios.

» Implementation of a checker and a detection engine (GUI).

» The developed plug-in is connected with Ericsson’s one.

» We propose an interface for building plug-ins on top of our
framework.

» Rq: The developed framework is general as it could be used
with any types of input traces. Furthermore, the proposed
scenario language can be used with properties of different
levels of abstraction. Hence, we anticipate to reuse this
framework in the second phase of the project, i.e. high-level
properties identification.

Outline

Introduction

Proposed Language
Characteristics
Syntax
Examples
Typing rules

Detection Engine

Patterns
Race conditions on files
Inefficient 1/0
Excessive Swapping

Conclusion

Outline

Proposed Language
Characteristics

Characteristics

1. Core langage :

>

Filter predicates : The language is composed of atomic parts
(predicates). The smallest predicate is the filter which filters a
specific field in the event (channel, process name, etc). Users
can specify several filters on the different fields of the event
related using relational operators.

Event filters : Grouping filters into the event filter. Tagging the
filter with an id so it can be referenced by other filters.
Scenarios : Combining event filters together into a scenario.
Scenarios as abstract events : Through the parameters of a
scenario, it could be used as a type in other scenarios.
Group of scenarios : Combining scenarios into a group of
scenarios.

Methodology (cont.)

2. Beyond the core language : The scenario and statement
options, are a set of optional clauses used to give directions to
the different modules of the system. We have implemented
the following default options, but there is no constraint that the
options could be extensible :

» Statement transition : it contains four different values (default,
consuming, non-consuming, and un-winding).

» Priority : it represents the importance of the statement in the
scenario being detected. It takes three values: low, medium,
and high. It is currently used as part of the IDMEF messages.

» Description : textual description of the scenario or the
statement that is being detected. It is used as part of IDMEF
messages.

» Instances Limit : maximum number of created scenario
instances.

Methodology (cont.)

3. Actions rules : The action clause, is used to define the
appropriate action to be taken when a given group, scenario,
or event is detected. User can define any external functions
using the technique explained later, and use them as an action
to a specific detection fact. Along with the external functions,
we have implemented the following default functions:

» Display: to display the detected events graphically in the user
interface.

» IDMEF: to create XML-based IDMEF messages, and send
them to a remote host.

» Command: to execute a given Linux commands on the shell, it
could be useful for example to shut down the computer, or
close a specific port in a response to a detected attack.

Outline

Proposed Language

Syntax

BNF of the proposed language

sfile
include
ext
group
spec
type

var

pred
evtdef
scenario
statement

option
action
exp
unop
binop

logop
eqop
relop
arop

include* ext* type* spec? group* action®

include file ;

extern 7 f (t1,...,7n);

group g { spec}

var* pred” evtdef* scenario*

typet=r1;

var x = exp(,y = exp)* ;

predicate p (x1,...,xn) {exp};

eventdef e where (exp) ;

scenario s [option*]? (x1,...,Xn) as (expy,...,exp,) { statement* }
(1)? event e [option*]? (: etype)? where (exp)? ;
within [option*]? ((expy, expo) | (exp)) { statement }
repeat [option™]? (exp) { statement* }

(01 =v1,...,0n = Vp)
action (exp) {f (exp;,...,exp,)"}
clx|expl|(exp)|f(expy,..., expy) | unopexp | exp; binop exp,

-

exp; logop exp, | exp; eqop exp, | exp; relop exp, | exp, arop expo
expy + exps

&& |l

===

=l<=1>|<

-1/

Outline

Proposed Language

Examples

Main characteristics of the core language

» Filters :

(timestamp == 26126.7872610);
(channel == "kernel") && (pname == "chroot");

» Event filters :

event e where (timestamp < 26126 &% pname == "firefoxx" || channel == "kernel");

» Scenarios :

scenario test {
event el where (channel == "fs" && type == "open");
event e2 where (channel == "fs" && type == "close" && pid == el.pid);

Main characteristics of the core language (cont.)

» Scenarios :

scenario test {
event el where (channel == "fs" && type == "open");
event e2 where (channel == "fs" && type == "close" && pid == el.pid);

» Abreviations :

eventdef open where (channel == "fs" &% type == "open");
eventdef close where (channel == "fs" && type == "close");

scenario test {
event el : open;
event e2 : close where (pid == el.pid);

Main characteristics of the core language (cont.)

» Scenarios as atomic proposition :

extern bool file (string s);

eventdef syscall_entry where (channel == "kernel" & & type == "syscall_entry");
eventdef syscall_exit where (channel == "kernel" &% type == "syscall_exit");
eventdef open_core where (channel == "fs" && type == "open");

eventdef chroot_core where (channel == "kernel" & & type == "chroot");

scenario open (filename, pid, return_code) as
(el.content.filename, e3.pid, e3.content.return_code) ({
event el : syscall_entry where (el.content.syscall_id == 5);
event e2 : open_core where (e2.pid == el.pid);
event e3 : syscall_exit where (e3.pid == e2.pid && e3.content.return_code = -1);

}

scenario chroot_jail {
event chrootl : syscall_entry where (chrootl.content.syscall_id == 61);
event chroot2 : chroot_core where (chroot2.pid == chroot1.pid);
event chroot3 : open where (chroot3.pid == chroot2.pid &% file (chroot3.filename));

Main characteristics of the core language (cont.)

» Other constructs :

eventdef socket_create where (channel == "net" &% type == "socket_create");
eventdef socket_connect where (channel == "net" && type == "socket_connect");
eventdef socket_send where (channel == "net" && type == "socket_call" && content.call == 9);
eventdef socket_receive where (channel == "net" && type == "socket_call" &&
content.call == 10);

var timeout = 1.0;

scenario syn_flood {
event syn1 : socket_create;
event syn2 : socket_connect where (syn2.pid == syni.pid);
event syn3 : socket_send where (syn3.pid == syn2.pid);
within (timeout) {
levent e : socket_receive;
}

Main characteristics of the core language (cont.)

» Other constructs :

var threshold = 50;
var timeWindow = 2.0;

eventdef fs_write where (channel == "fs" && type == "write");
eventdef fs_access where (channel == "kernel" && type == "syscall_entry" &&
content.syscall_id == 33);

scenario inefficient_IO {
event el : open;
within (timeWindow){
repeat (threshold){
event e : access_file;

}

Main characteristics of the core language (cont.)

» Other constructs :
var admFiles = [...];
scenario test {

event e where (e.content.filename in admFiles);

}

Main characteristics of the core language (cont.)

» Group of scenarios :

include "sysFiles.scn";
group LocalPolicy {
scenario s1 {
}
scenario s2 {

}

Main characteristics of the advanced part

» Consuming and nonconsuming + attributes :

eventdef socket_create where (channel == "net" &% type == "socket_create");
eventdef socket_connect where (channel == "net" && type == "socket_connect");
eventdef socket_send where (channel == "net" && type == "socket_call" && content.call == 9);
eventdef socket_receive where (channel == "net" && type == "socket_call" &&
content. call == 10);

var HIGH = 2, MEDIUM = 1, LOW = 0;

scenario syn_flood
[priority = MEDIUM; descr = "Syn.flood.attack"; iLimit = 5]

{
event syni[nc] : socket_create;
event syn2[c] : socket_connect where (syn2.pid == syni.pid);
event syn3[c] : socket_send where (syn3.pid == syn2.pid);
within(2.0) {

levent[c] e : socket_receive;

}

Main characteristics of the rule part

» Rules :

action (testing.inefficientlO &% security.chroot_jail) {
display (testing.inefficientlO .x);
}

action (security.syn_flood.$x) {
idmef ($x.pid);
}

action (security .s.x) {
command "mailto:...."
}

Scenario Editor - An eclipse plugin

LTTng|- [home/hash/S cenarios/Abstraction/file_ system_complete.sci

File Edit Navigate Search Project Run menuScenario Window Help

B @ | Qe | s Ele e | compile =

| file_system complete:scn 1 file sys_headerscn m scenario_Lscn } IDMEFAction.scn } % sLscn } % headerfile.scn } ® inefficientio.scn }
//This file contains a set of scenarios related to File system.

=\ 7

o include "/home/hash/Scenarios/Abstraction/file sys header.scn®;

55 /Jextern void writeFile(String id, String pars);

5 group abstraction {
//variables

=] var close_id = 6, open_id

=3, urite 1d 4, read i < 3;
var sucket create_id=102, socket_t create ca®l_id = 1, so

cket_connect_call_id = 3, socket_send_call_id = 9, socket_receive_call_id =

//Scenario to detect close file behavior.

scenario close (fd,filename,ret) as (e2.content.fd,e2.content.filename,e3.content. ret){
event elisyscall entry where (content.syscall id —= close id);

event e2:fs close;

event e3:syscall exit;

//how to ensure that the syscall exit is that for the same entry!

//Scenario to detect the open file behavoir.

scenario open(fd, filename, ret) as (e2.content.fd,e2.content.filenane,e3. content. ret){
event elisyscall entry where (content.syscall id = open
event e2:fs open;
event e3:syscall exit;

//Scenario to detect write to file behavoir.

scenario write (fd, count, ret) as (e2.content.fd, e2.content. Cnlmt e3.content.ret){
event el:syscall entry where (content.syscall id == write

event e3:syscall exit;

//Scenario to detect read from file behavoir.
scenario read (fd, count, ret) as (e2.c

ontent.fd, e2.content.count,e3.content.ret){

Writable Smartinsert | 16:2

Outline

Proposed Language

Typing rules

Type checker module

T = int|string| bool|time |ty X...xtp >t |{h:71,....]h:7n}

» Typing environments :

- &= [X1 T, Xn !t Tn]

» TypeOf = [INT : int, IDENT : string, TIME : time]

» &, = [Iting : {trace : string, type : string, channel : string,
cpu : int,timestamp : time}]

» & = & T (flat(&(Ittng)))

» Sequents :

»Erexp:T
»Ero0: &

Type rules

& 1 [flat(E(etype))] + exp : bool e ¢ dom(&E)

(th1)8 F ()?event e (: etype)? (where exp)? : £ 1 [e : {timestamp : time} @ E(etype)]

(evt) Erexp: bool e ¢ dom(E)
2) Ev ()7 event e (where exp)? : & T [e : &(Itting)]

(scn) Erevifilter : & & vrexpy:ti ... E rexp,:1n s ¢ dom(E)

&+ scenario s (x1,...,Xn) as (expy,...,exp,) {evtfilter' } : E1[s: {x1 1 T1,...,Xn : Tn }]

(edef) Erexp: bool e ¢ dom(E)
&+ eventdef e where exp : &1 [e : E(lttng) |

Scenario Editor - An eclipse plugin

LTing

Xternal Fi

File Edit Navigate Search Project Run menuScenario Window Help

| e | |~ |81 bl ® o o

J Compile

% file_system_complete.scn (s file_sys_headerscn (a scenario_Lscn (a sLscn 2§ headerfile.scn } ® inefficientioscn }

//File autonatically generated.
//@uersion 1.0 Wed Dec 08 02:22:36 PST
//@Author hash

group defaultGroup{
var count = "as";
J/Scenario automatically generated.
scenario s1{
//TODO: write the body of the scena
] repeat (count) {
event el where (channel

[£¢ Problems 52

2010

//File path: /home/hash/runtine-EclipseApplication/s1.sen

rio.

“metadata”);

2 errors, 0 wamings, 0 others

Description | Resource | Path | Location | Type

v © Errors (2 items) : :
© IntExpected sl.scn i [Extemal Files line11 : problem
© NotSameType file_system_complete.scn { [External Files line13 | Problem

Detection Engine

» The inputs to the detection engine are the pre-treated
scenario instances and the standardized low-level events.

» There is a difference between scenario prototypes which is
the original format of the given scenario, and the scenario
instances which is the executable running instance of the
scenario.

» For reasons of performance, the LTTng events are treated as
block of events.

» For the evaluation of different expressions, a complete
environment is used to keep the values of different statements
detected as well as the scenario parameters.

Detection Engine : How it works?

v

Loop sequentially on all the events in the trace.
Loop on all the scenario instances.

Pass the event to the scenario instance :

> If the expression in the statement is evaluated to true, the
cursor associated with the scenario is incremented,;

» in that case, if there is an action associated with the statement,
it is executed; otherwise, the event is displayed to the GUI or
sent as an IDMEF message to a remote client.

if all the statements in the scenario are evaluated to true :

» the action associated with the scenario is executed;

» if the last statement of the scenario is non-consuming, the
scenario is deleted and removed from the array of scenarios;
otherwise the cursor is initialized and the detection continues
at the same scenario instance.

v

v

v

Detection Engine : Statement transitions
Statement transitions are given as options to the statements :

1. Default: The cursor is incremented, and if all the statements in
the scenario are evaluated to true, there is no instance
created, and the cursor is initialized to 0.

2. Consuming transition: the cursor is incremented in all
scenario instances of the same scenario prototype. There is
no scenario instance created. The cursor is incremented, and
the scenario moves form the current statement to the next
one.

3. Non-Consuming: The cursor is incremented, and another
instance of the same scenario is created.

4. Un-winding: This is a rollback transition. The cursor of the
scenario is initialized to the statement passed in the
unwinding transition (for example: uw=e1); in this case the
cursor is initialized to statement e1, and all the current
instances of the same scenario are deleted.

Detection Engine : the GUI

g = Fomelash] 2 ARt aEHaR IS ey S e COmpIEte e EEI{BEEISOR

Fle Edi Navigate Search Project Run Windowtelp

=9 Ja- | #~ | © & | compile "

%P0 &2 5 Co | = B3 Contrl Flow 1 & Resources | = Statisics| BBEeLaQ B0~

b & bigTrace Process Brand PID TGID PPID CPU Birth sec Birth nsec TRACE ®

& Extemal Files swapper o o 0o {0 o 000000000 tracel

< & newromat swapper o 0 0 1 0 0o00o00o trocel Er_ > 51— Tl

~ & Experiments (1] | init 1 1 0 0 37616 044207880 tracel &

Kihveadd > |2 fo Jo |16 |osta0ses0 tacer

b & Taces[1] ksoftirgd/0 3 03 2 0 3616 044211461 tracel —

b & TestNew kworker/0:0 4 14 2 0 37616 044215923 tracel —
kworker/u:0 5 5 2 0 37616 044217478 tracel e
migration0 6 6 12 [0 37616 04421916 tracel
migration/1 707 2 [0 3616 044220397 tracel
konorker/1:0 8 8 2 |0 |36l 04221779 tracel

Events - expl N =o
ERL 7
vO Al
B defaultGroup
Property Value Iy
5 fle_system_complete:scn 1 & fle_sys_headerscn | & scenarlo_Lscn | 8 IDMEFActionscn | =g

//This file contains a set of scenarios related to file system. B

include */hone/hash/Scenarios/Abstraction/file sys header.scn”;
extern void writeFile(String id, Stringl] pars);

group abstraction {
//variables
var close id = 6, open id =5, write id = 4, read id = 3,

//scenario to detect close file benavior.

io close (fd, filename, ret) as tent. fd il 3.content. ret) {
event eL:syscall_entry {content. symu it

event e2:fs_cl

event €3:sy3call exit; //how to ensure that the syscall exit is that for the same entry!

¥

[fscenario to detect the open file behavoir.
n(fd, filenane, ret) as (e2.content.fd,e2.content. filenane,e3.content.ret){
vent 6105 ysca _entry (content. syscall id == open_id

vent €3:5y3001L extt;

Detection Engine : the GUI

S/acenario 1iscn - Eclipse/SDK:

File Edit Navigate Search Project Run Window_Help
| rav |a~ | #~ | B G | compile »
%.Pro % 55 Co | = O/ Control Flow 3 i Resources| = Statistics| Bhohe e e =a}7
b & bigTace Process Brand PID_ TGID PPID| CPU| Birth sec Birth nsec TRACE ®
@ Extemal Files swapper o o o o o 000000000} tracel
~ & newFomat swapper o 0 10 000000000, tracel Er_ > 51— Tl
< = Experiments [1] | init 101 0 0 3616 044207880 tracel =
Kihreadd 2 2 0 |0 37616 044209850 tracel
b &Taces (1] ksoftirad/o 33 2 0 37616 044211461 tracel —_—
b & Testiew kworker/0:0 4 a4 2 o |37616 044215923 tracel
kworkeru0 5 15 2 10 37616 044217478 tracel —]
migration/o 6 6 2 |0 37616 044219116 tracel
migration/1 77 2 [0 37616 044220397 tracel
knorker/1:0 8 8 2 |0 37616 044221779 tracel
ksoftirqd/L 9 9 2 0 37616 044223262 tracel —
kworker/0:1 10010 2 0 37616 044224437 tracel - @
cpuset W12 0 37616 044226022 tracel E—]
2 =g
dr e <
Name | Number of events _ Timestamp Channel | Type Tace Content
[EIES 5
O@yel 37616.43890350 metadata core_marker_id tracel =
Property | Value Ofyel 3761643893332 metadata core_marker_format tracel channel= kemel, format= address #p%lu write_acc
O@yel 37616.43894330 metadata core_marker_id tracel 4, alignment= 0, channel= mm, long= 4, int
O@yel 37616.43895482 metadata core_marker_format tracel channel= mm, format= pfn %lu filp %p offset %lu, r
O@yel 37616.43896390 metadata core_marker_id tracel size_t= 4, alignment= 0, channel= block, long= 4, it
O@yel 37616.43897437 metadata core_marker_format tracel chan»ei hlm:k format: pm'/au. name= unplug io c|
fl_system_completescn | fie_sys_headerscn | 8 scenario_Lscn 53§ IDMEFACtonscn =a

7Eile autonatically generated
//@version 1.6 Hon 7
//@huthor hash

extern bool org.eclipse. Linuxtools.afl.external. functions. TestClass. test();

111 PST 2010

group defaultGroup{
//scenario automatically generated.
scenario scenari
event el (channel == “metadata®);

¥

Patterns

In the following, we are considering a set of undesired behaviours
touching different fields like: security, performance, and software
bugs.

More precisely, we present three examples of such properties :

1. Race conditions on files.
2. Inefficient 1/O.
3. Excessive Swapping.

and propose, for each one, a specification using our language.

Outline

Patterns
Race conditions on files

Race conditions on files

Race conditions is one example of File Permissions violations. It
occurs when a system or a device assumes to perform two or
more operations atomically while they are not. They are altered by
external events that may be occasionally or explicitly executed by
an attacker.

Race conditions on files (cont.)

if (access("/tmp/x", WOK) == 0) {

// attacker thread

//unlink ("/tmp/x");

// attacker thread

//symlink ("/etc/passwd","/tmp/x");

if ((£d = open("/tmp/x", O_WRONLY)) == —-1) {
perror ("/tmp/x");
return (0);

}

//write to the file

Figure: Race conditions on files C code.

Race conditions on files (cont.)

[file_sys(f1);]
link(f1,f2);

{save_fname(f1,f2);}; [same_pid();

same_fname(f1);]

f2);

[same_pid();
same_fname(f2);]
unlink(f2);

Figure: Race condition FSM.

Race conditions on files (cont.)

SYSCALL_DEFINE2(symlink ,
const char __user =, oldname,
const char __user %, newname)

{

trace_mark (kernel, syscall_link, "filename %s", newname);

Figure: Adding a marker in symlink system call.

Race conditions on files (cont.)

kernel.syscall_entry: 137305.5091 (./kernel_1), 7914, 7914,

./race_violation, , 31269, 0x0,
SYSCALL ip = 0xb809a430,
syscall_id = 83 [sys_symlink+0x0/0x30]

#The added marker

kernel.syscall_link: 137305.5101 (./kernel_1), 7914, 7914,
./race_violation, , 31269, 0x0,
SYSCALL filename /etc/passwd

kernel.syscall_exit: 137305.5302 (./kernel_1), 7914, 7914,
./race_violation, , 31269,
0x0, USER MODE ret = 0

Figure: LTTng relevant link calls.

Race conditions on files script

extern bool file_sys (string file);

//variables definition.
var acc_file = ["read", "write", "exec"];

//Types definition.

eventdef syslink where (channel == "kernel" && type == "link");
eventdef sysunlink where (channel = kernel" &% type == "unlink");
eventdef acc_file where (channel == "fs" && type in acc_file);

scenario sens_acc(){
event el:syslink [c] where (file_sys(content.filename));
event e2:sysunlink[uw="e1"] where (content.filename == el.content.filel);

event e3:acc_file[nc] where (content.filename == el.content. filel);

}

action (sens_acc) {
display (sens_acc.x);
}

Outline

Patterns

Inefficient 1/0

Inefficient 1/0O

One undesired property is having a single process written a big
small chunks of data to the disk in a small interval of time.

Inefficient I/O (cont.)

counter > limit &
; time < interval
' [same_pid();

fd();
start %@ same_fd();] @

close(fd);
[same_pid()]

small_chunk(fd)
{incr_counter();}

Figure: Writing small chunks of data to files.

Inefficient I/O script

//variables definition.
var timeout = 1000, count = 100, bytesCount = 10000;
var acc_file = ["write","read","exec"];

//Types definition.

eventdef file_open where (channel == "fs" &% type == "open");
eventdef file_close where (channel == "fs" && type == "close");
eventdef file_acc where (channel == "fs" && type in acc_file);

scenario inefficient_io () {
event el:file_open [nc];
event e2:file_close [uw=el] content.fd == el.content.fd);

within (timeout){
repeat (count){
event e4:file_acc [c] where (content.count<bytesCount);
}

}

action (inefficient_io) {
display (inefficient_io .x);

}

Outline

Patterns

Excessive Swapping

Excessive Swapping

Swapping operation is costly in terms of performance. Performing
many swap operations in a small interval of time could cause
"excessive swapping".

Excessive Swapping (cont.)

[swap_operation();]
{ start_timer();

increase_count(); } [count >

threshold]
start — S Sz

timeout;

Figure: Excessive swapping FSM.

Excessive Swapping script

//Variables definition.
var swap_operations = ["swap_in", "swap_out"];
var allowedSwaps = 10000, timelnterval = 500;

//Types definition.
eventdef swap where (channel == "mm" & type in swap_operations);

scenario excessive_swapping {

within(timelnterval) {
repeat (allowedSwaps) {
event e : swap;

}
}

action (excessive_swapping) {
display (excessive_swapping.x);

}

Conclusion

1. We have presented a new declarative scenario description
language. The declarative approach of the language is simple
to use because the users are not concerned about
implementation details; they are only concerned about what to
be detected (events, scenarios, etc).

2. We assume that the proposed language supports the most
important features needed in a scenario description language
like : scenarios based on multiple events, real-time
constraints, counting, knowledge acquisition (as scenarios
could be used to defined other scenarios), variables definition,
etc.

3. We have to consider that the presented framework is a first
step toward more efficient tools for the automatic detection of
problematic behaviors.

In fact, we consider the output of our framework as what are
called in the literature low-level observation or facts. On top of
that framework, we can add more analysis based on such
observations (detected scenarios).

Future Work

1. Continue the implementation of the detection engine and
measure its performance against large and complex patterns.

2. Backward detection: it will be interesting if we can move
forward and backward in the traces : If an interesting event is
detected, move backward to see the possible reasons for the
given fact.

3. Enhance the performance of the engine by adding more
optimization to the scenario pre-processing or by parallelizing
the detection of scenarios.

4. Synchronize with other projects, mainly System Health project
and Trace Abstraction project.

5. Add to our framework streaming and live reading of a trace
features.

Thank you

Questions?

	Introduction
	Proposed Language
	Detection Engine
	Patterns
	Conclusion

