
lTechniques for the Abstraction of

System Call Traces

lWaseem Fadel

Abdelwahab Hamou-Lhadj

Software Behaviour Analysis Group

Concordia University

Montréal, QC, Canada

{w_fadel, abdelw}@ece.concordia.ca

Tracing and Monitoring Distributed Multi-Core Systems

Mid-Project Meeting, December 2010

Agenda

 Objective

 Approach

 Progress since the last meeting

 Remaining challenges

 Conclusion

2

3

Objective

 Build abstractions from low-level system call traces

generated using LTTng

 E.g. mulitple disk blocks read requests, disk controller interrupts

can be replaced by a simple ‘read file’

 Applications

 Help users understand the behavioural aspects of a

system to facilitate debugging, adding new features, etc.

 Ensuring that subsequent versions of the same system

evolve without new errors being introduced

 Comparing instances of the same system in a redundant

and diverse architecture for fault detection and isolation

4

Approach

Linux Kernel

Documentation

Sample LTTng

Traces

Expert

Knowledge

Trace Generated

from

Linux Kernel

(LTTng events)

Trace Abstraction

Algorithm

Based on Pattern

Matching and

Filtering of Noise

High-Level

Trace

Pattern

Library

 We built a pattern library that contains several
patterns that represent key Linux kernel operations

 File, socket and process management operations

 The patterns are modeled as state machines

 States represent system modes (user_mode,
syscall_mode, etc.)

 Events consist of LTTng events

5

Pattern Library

Example

of a pattern

6

7

Filtering of Trace Noise

 We define noise in an LTTng trace as any event

associated with memory management, page faults,

and interrupts

 Are dependent on a specific system architecture

 Can occur anywhere in the trace and in any order

 Are treated similarly to the way utilities have been treated

in related work

 Associated events are treated as a set

 i.e. order of occurrence of detailed events is ignored

8

Progress since the last

meeting

 30 more patterns have been defined (not all of them

are implemented)

 In total around 70 patterns have been formally defined

 Improvements have been made to the Linux Kernel

Trace Abstraction Tool

 The development of a schema for defining patterns

 Additional case studies on large traces

 We started exploring VM and user space traces

 Thesis writing and defence

9

Catalogue of Patterns (updated)

 File Management Operations
 Open, Read, Write, Seek, Close, Access, File

Control, Stat, Read Link, File Duplicate, File

Truncate, Device Control, and Poll

 TCP/UDP Socket Management
 Create, Connect, Bind, Listen, Accept, Send,

Receive, Close

Catalogue of Patterns (cont.)

 Process Management:

 Clone, Execute, Get Resource Limit, Get Time of Day,

Exit, Unlink, Get User ID, Get Group ID, Get Process

ID, Get Parent Process ID, Set Scheduling

Parameters, Get Scheduling Parameters, Get

Maximum Scheduling Algorithm Priority, Get Minimum

Scheduling Algorithm Priority, Set Scheduling Policy

and Parameters, Change Dir, Signal Return, Clock

Get Time, Futex, Get Directory Entries, IPC, Get

Memory Advice, Pipe, and Change Mode

10

Example of New Patterns

11

New Patterns (cont.)

12

13

The Linux Kernel Trace

Abstraction Tool

 The tool takes as input a trace generated

from LTTng tracer

 It applies the abstraction process to the trace

 It outputs the trace in its abstracted format

 It is developed in Java and targeted to be

integrated with the TMF Eclipse plugin

14

Snapshot

15

A Simple GUI

16

New Features

 The abstraction process operates on the

whole trace instead of one process

 Link between the abstracted events and the

corresponding lines of the original trace have

been added

 Patterns are modeled as XML files which can

be fed to the tool

New Features (cont.)

 Easy to add new patterns

 Easy to build higher level abstractions based

on the current level

 Pattern library and the programming

language are totally separated

 Patterns can be exchanged between different

tools

 TMF integration – still in progress

17

18

XML Representation of Patterns

<?xml version="1.0" encoding="ISO-8859-1"?>

<pattern name="Sample Pattern" type="HighLevelSampleConstrcut"
noise="false">

<event name="syscall_entry" syscall_name="sys_sample" order="1"
prev_state="IGNORE">

<current_state>SYSCALL_SAMPLE</current_state> </event>

<event name="sample" order="2"
prev_state="SYSCALL_SAMPLE">

<current_state>SYSCALL_SAMPLED</current_state>
</event>

<event name="syscall_exit" order="LAST"
prev_state="SYSCALL_SAMPLED">

<current_state>USER_MODE_SAMPLED</current_state>
</event>

</pattern>

<?xml version="1.0" encoding="UTF-8"?>

<pattern name="Duplicate File Descriptor" type="HighLevelDupConstrcut"
noise="false">

<event name="syscall_entry" syscall_name="sys_dup" order="1"
prev_state="IGNORE" current_state="SYSCALL_DUP">

</event>

<event name="syscall_exit" order="LAST" prev_state="SYSCALL_DUP"
current_state="USER_MODE_DUP">

</event>

</pattern>

19

XML Representation of Patterns

(cont.)

20

Case Studies

 We applied our approach to large traces

generated from the following systems

 Java Virtual Machine

 The Eclipse framework

 Gedit

 GIMP image editor

 Firefox

21

Quantitative Analysis

Process Initial Size
Size after

Abstraction

Number of

Noise Events

Compression

Ratio

Eclipse 1226985 465886 94362 62%

GIMP 847575 243871 132343 71%

Firefox 646710 309926 41631 52%

Gedit 186167 100523 10830 46%

JVM 47271 3452 13444 93%

22

Qualitative Analysis

A snapshot of a C application that was traced by LTTng

23

Qualitative Analysis

Corresponds to process

execution

fp = fopen("output.txt", "w");

fprintf(fp, "This is a test line\n");

fprintf(fp, "This is another test line\n");

fprintf(fp, "This is the last test line");

fclose(fp);

fp = fopen("output.txt", "r");

while (c!=EOF) {

c=fgetc(fp);

printf("%c", c);

}

fclose(fp);

Exploring VM and Userspace

traces

 Experimenting different kinds of traces

generated from LTTng

 Virtual Machine Traces

 Userspace Traces (UST)

 Investigating the abstraction of traces into

higher-levels

24

Virtual Machine Traces

 Studied several sample traces generated

while running KVM (provided by Julien

Desfossez)

 KVM events have similar patterns as system

call events

 KVM patterns need to be defined and added

to the Pattern Library through the defined

XML schema and fed to the abstraction tool

25

Improved Abstraction Based on

Recurrent Patterns

 High-level events could appear in the form of

patterns that occur in a non-contiguous way

 As an example, the following events:
File Open, File Read, File Close, Socket Create, Socket Bind,

Socket Listen, Socket Accept, Socket Send, Socket Close

 Could correspond to a pattern that appears in

multiple places in the trace

 Such patterns can be detected and replaced

with a higher-level representation

26

Improved Abstraction Based on

Recurrent Patterns (cont.)

Example:

1- Process Execute

2- File Open

3- File Read

4- File Close

5- Get Time of Day

6- Read Link

7- Unlink

8- File Open

9- File Read

10- File Close

11- Process Exit

27

1- Process Execute

2- FM[2,8] = {File Open, File Read, File Close}

5- Get Time of Day

6- Read Link

7- Unlink

11- Process Exit

Possible techniques for

detecting Recurrent Patterns

28

Possible techniques for

detecting Recurrent Patterns

(cont.)

29

 Various techniques could be explored for the

detection of recurrent patterns:

 String matching techniques (maximal pairs)

 N-gram extraction algorithms

 Suffix trees

 Etc.

User Space Traces

 We experimented with sample user space

traces provided by David Goulet

 Anything could be traced in a user-space

application

 The flow of an application is monitored by

tracing entry-exit points of that application’s

routines (methods, functions, or procedures)

30

Abstraction of User Space

Traces

 Many techniques have been developed to

abstract routine call traces

 Detecting and removing low-level implementation

details

 Detecting sequences of events

 Transforming the trace into a Directed Acyclic Graph

 Grouping of events based on the nesting level

 Sampling

 These techniques need to be experimented

with in the context of this research
31

Higher-Level Abstraction

 Defining how high in the abstraction layers

we should go

 Investigating the benefits of building higher-

level patterns based on the patterns defined

in the Pattern Library

 Solving the problem of interleaved events

belonging to different higher-level patterns

32

Higher-Level Abstraction

(cont.)

33

Higher-Level Abstraction

(cont.)

34

Higher-Level Abstraction

(cont.)

 The following abstracted trace lines:
File Open: 442192.435321551 (/tmp/trace10/fs_1), 22438, 22438, ./Files, , 29184, 0x0, SYSCALL { fd = 3,

filename = "/lib/tls/i686/cmov/libc.so.6" }

File Read: fd = 3 }

File Stat: 442192.435323162 (/tmp/trace10/kernel_1), 22438, 22438, ./Files, , 29184, 0x0, SYSCALL { ip =

0xb7fc1a6e, syscall_id = 197 [sys_fstat64+0x0/0x30] }

File or Socket Close: 442192.435328963 (/tmp/trace10/fs_1), 22438, 22438, ./Files, , 29184, 0x0, SYSCALL { fd

= 3 }

Socket Create: 442192.652063137 (/tmp/trace12/net_1), 23566, 23566, /usr/bin/java, , 23565, 0x0, SYSCALL {

family = 1, type = 1, protocol = 0, sock = 0xd563d340, ret = 3 }

Socket Connect: 442192.652064103 (/tmp/trace12/net_1), 23566, 23566, /usr/bin/java, , 23565, 0x0, SYSCALL

{ fd = 3, uservaddr = 0xbf8dbb0a, addrlen = 110, ret = -2 }

File or Socket Close: 442192.652064426 (/tmp/trace12/fs_1), 23566, 23566, /usr/bin/java, , 23565, 0x0,

SYSCALL { fd = 3 }

 Could be replaced by:
File Management (File Open, File Read, File Stat, File Close)

Socket Management (Socket Create, Socket Connect, Socket Close)

35

36

Remaining Challenges

 Continuous improvement of the pattern
library

 Defining additional patterns

 Dealing with new LTTng events

 Improving the algorithm in terms of
performance

 Implementing different pattern detection
algorithms over the abstracted traces

 Integration with the TMF plugin

 We introduced techniques to abstract execution

traces resulting from the Linux kernel

 Our approach is based on building a pattern library

that consists of patterns of the most common

operations in Linux

 We also defined noise patterns that result from

memory management operations and page faults

 We introduced an algorithm to abstract the system

call traces by using the pattern library

 We applied our techniques to traces generated from

several processes
37

Conclusion

Thank You!

Questions?

38

New Patterns

39

New Patterns (cont.)

40

New Patterns (cont.)

41

New Patterns (cont.)

42

New Patterns (cont.)

43

New Patterns (cont.)

44

New Patterns (cont.)

45

