

Mutual exclusion in Linux

(or: how to avoid big messes in the kernel)

Concurrency

Sources of concurrency

Multiple processors
Hardware interrupts
Software interrupts
Kernel timers
Tasklets
Workqueues
Preemption
...

Concurrency is good

The only way to use SMP systems

Use any system to its fullest potential

Concurrency is a problem

Uncontrolled concurrency leads to disaster

 photo: Joey Parsons

A simple example

The Linux linked list type

struct list_head {
 struct list_head *next, *prev;
};

void list_add(struct list_head *new,
 struct list_head *prev,
 struct list_head *next)
{
 next->prev = new;
 new->next = next;
 new->prev = prev;
 prev->next = next;
}

Race conditions

...when concurrency goes bad
Memory leaks
Kernel crashes
Security holes
Data corruption
...

These bugs are
Hard to reproduce
Hard to find
Easy to create

Avoiding race conditions

One must limit concurrency!

In particular, access to global resources
Data structures
Hardware resources

...must be controlled

Kernel resources

Concurrency control mechanisms
spinlocks
mutexes
completions

Concurrency avoidance mechanisms
atomic variables
per-CPU variables
read-copy-update

Spinlocks

The core kernel mutual exclusion primitive

One processor can “own” a lock
Any others will “spin” waiting for it

Thus:
Spinlocks are fast to acquire and release
Spinlock contention is very expensive
Code holding spinlocks cannot sleep

Atomic context

Threads holding spinlocks cannot sleep

No:
kmalloc(GFP_KERNEL)
copy_*_user()
schedule()

Preemption is disabled
Long hold times will create latencies

Also...

Never return to user space with a spinlock held

Lock declaration

#include <linux/spinlock.h>

spinlock_t my_lock;

spin_lock_init(&my_lock);

Basic locking

To acquire a spinlock:

spin_lock(&my_lock);

To give it back:

spin_unlock(&my_lock);

Spinlocks and interrupts

Consider this scenario:
Device driver acquires a spinlock
The device interrupts
Driver's interrupt handler is called
Interrupt handler attempts to acquire the spinlock

....

The CPU is never heard from again

Interrupt-safe locking

/* Unconditionally disable interrupts */
spin_lock_irq(spinlock_t *lock);
spin_unlock_irq(spinlock_t *lock);

/* Save previous IRQ state */
spin_lock_irqsave(spinlock_t *lock,
 unsigned long flags);
spin_unlock_irqrestore(spinlock_t *lock,
 unsigned long flags);

/* Software interrupts only */
spin_lock_bh(spinlock_t *lock);
spin_unlock_bh(spinlock_t *lock);

Mutexes

Another low-level locking primitive

Differences from spinlocks:
Slightly heavier-weight
Mutex acquisition can sleep
Code holding mutexes can sleep

Mutex basics

#include <linux/mutex.h>

struct mutex *my_mutex;

mutex_init(&my_mutex);

Mutex locking

Ways to acquire a mutex:
void mutex_lock(struct mutex *m);
int mutex_lock_interruptible(struct mutex *m);
int mutex_lock_killable(struct mutex *m);

Giving it back:
mutex_unlock(struct mutex *m);

Mutex rules

Mutexes can only be locked once

No mutex acquisition in atomic context

Holder must unlock the mutex

Code holding a mutex can be preempted

Adaptive spinning

If a mutex is contended
Other acquirers will sleep

Except...
If the owner is currently running
Then acquirers will spin for a bit

The result
Slightly unfair acquisition
Better cache performance

Spinlock or mutex?

Use spinlocks when:
Performance matters
Critical sections are short
Critical sections are accessed in atomic context

Use mutexes when:
Critical sections must be able to sleep
Hold times could be long

Mixing spinlocks and mutexes

It is possible to hold both types at once

Acquire the mutexes first!

Completions

Do not use mutexes to signal action completion

We have completions for that

#include <linux/completion.h>

void init_completion(struct completion *c);

Waiting for completion

void wait_for_completion(struct completion *c);
int wait_for_completion_interruptible(
 struct completion *c);
int wait_for_completion_killable(
 struct completion *c)
long wait_for_completion_timeout(
 struct completion *c,
 unsigned long timeout);
unsigned long
wait_for_completion_interruptible_timeout(
 struct completion *c,
 unsigned long timeout);

Signaling completion

Use one of:

 void complete(struct completion *c);
 void complete_all(struct completion *c);

To be avoided

Semaphores
Unless you have a real counting semaphore need

rwlocks

Big kernel lock
lock_kernel(); unlock_kernel();

Homebrew locking schemes

Questions on locking primitives?

Locking problems 1: contention

Contention for locks kills performance
Especially when spinlocks are involved

One possible solution: finer-grained locks
The kernel now has thousands of locks
This has helped, but...

Locking problems 2: lock ordering

Multiple locks must always be taken in the same
order

The alternative: ABBA deadlocks

Finer-grained locking makes the problem worse

ABBA?

ABBA deadlocks

Thread 1 takes lock A
...then attempts to take lock B

Thread 2 takes lock B
...then attempts to take lock A

Everybody waits for a very long time

The problem

What are the rules when you have thousands of
locks?

One solution

Lockdep - the kernel lock prover

Configuration-time option

Will track all lock ordering
IRQ states too

Complains on inconsistent usage

Significant performance impact

Locking problems 3: cache
bouncing

Cacheline bouncing kills performance

Only on SMP systems
...but all systems are SMP now

Adding more locks may make the problem worse

A solution

Avoid locking altogether

Can greatly increase performance
At the cost of trickier code

Atomic variables

Special variables which can be changed without
locking

 #include <asm/atomic.h>

 atomic_t my_atomic;

Atomic operations

void atomic_set(atomic_t *a, int value);
int atomic_read(atomic_t *a);

void atomic_add(int value, atomic_t *a);
void atomic_sub(int value, atomic_t *a);
int atomic_sub_and_test (int value, atomic_t *a);
void atomic_inc(atomic_t *a);
void atomic_dec(atomic_t *a);
int atomic_inc_and_test(atomic_t *a);
int atomic_dec_and_test(atomic_t *a);
...

Atomic ups and downs

Atomics can help avoid locking
but only for simple operations

Their use can be expensive
Cache bouncing
Locked operations

Bit operations

#include <asm/bitops.h>

void set_bit(int bit, unsigned long *v);
void clear_bit(int bit, unsigned long *v);
int test_bit(int bit, unsigned long *v);
int test_and_set_bit(int bit, unsigned long *v);

...

Per-CPU variables

An array of copies of a variable, one per CPU

Local access requires no locking
Preemption must be disabled

Cross-CPU access may require locking

Creating per-CPU variables

#include <linux/percpu.h>

/* At compile time */
DECLARE_PER_CPU(type, name); /* in .h file */
DEFINE_PER_CPU(type, name); /* in .c file */

/* At run time */
type var = alloc_percpu(type);

Local access to per-CPU variables

Simple case:

 get_cpu_var(simple_counter)++;
 put_cpu_var(simple_counter);

More complicated:

 type &var = &get_cpu_var(percpuvar);
 /* Do stuff; preemption is disabled */
 put_cpu_var(percpuvar);

Cross-CPU access

Get a pointer with:

 type *ptr = per_cpu_ptr(var, cpu_no);

Do you need some other locking?

Read-copy-update (RCU)

An advanced locking-avoidance algorithm
Patented by IBM - GPL code only

Useful for:
Frequently-read, rarely changed structures
Pointer-oriented data structures

Several implementations
Lots of subtlety
http://lwn.net/Kernel/Index/ under read-copy-update

Example
Imagine an array of pointers
to some structure of interest.

Kernel code holds some
references to that structure

We need to update it.

Step 1
Copy the object and update
the information

Change the pointer to the
new object

References to the old copy
still exist

Step 2
The new object may begin to
gain references

The old one remains in use

Step 4
Eventually all users of the old
object drop their references

Step 4
The old object may now be
safely deleted.

RCU rules

Object may not be changed in place
RCU must be used instead

Read access to objects in atomic code only
Preemption must be disabled

References to objects cannot be kept past
scheduling

Why these rules?

How do you know when all references are gone?

...When every processor has scheduled once

Using RCU

Read side

#include <linux/rcupdate.h>

rcu_read_lock(); /* Disables preemption */
struct something *p = rcu_dereference(object);
...
rcu_read_unlock();

RCU write side

Embed this in your structure

 struct rcu_head rcu;

When it is time to free the structure:

 void call_rcu(struct rcu_head *rcu,
 void (*func)(struct rcu_head *rcu));

func() will be called when the structure can be
freed

RCU Questions?

Realtime preemption

The goal of the realtime project
Deterministic response times - always

Realtime makes determinism the top priority
Ahead of throughput

Realtime changes

Spinlocks become mutexes
The can sleep at any time
Preemption not disabled
Priority inheritance implemented

Old-style spinlocks still exist
Called raw_spinlock_t;
Use of these will attract scrutiny

Realtime changes

Per-CPU variables no longer exist
Access protected by spinlocks
Long-term solution still unclear

Realtime changes

Read-copy-update becomes more complex
Can't disable preemption
Can't wait for everybody to schedule
Throughput drops accordingly

The last slide

What else would you like to know?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

