

Process management

What is a process?

How Linux encapsulates a running
program and its environment

Process attributes

Family relationships
All processes have a parent
They may have siblings or children

init is the ultimate ancestor process

Process attributes

Resources
Address space and memory mappings
Open files
Namespaces
IPC resources
...

Process attributes

Scheduling state
Scheduling class
Priorities
Resource usage

Credentials
Identity
Privileges (capabilities)

...

struct thread_info

struct thread_info {
struct task_struct *task;
struct exec_domain *exec_domain;
__u32 flags;
__u32 status;
__u32 cpu;
int preempt_count;
/* ... */

}

(arch/x86/include/asm/thread_info.h)

Finding struct thread_info

struct task_struct

Getting the task_struct

The current() macro
Masks bottom bits from stack pointer
Casts to thread_info
Return info->task

struct task_struct
include/linux/sched.h

What's in the task_struct

state
priorities
CPU mask
mm pointer
pid and tgid
parent pointers
child process list
sibling process list

ptrace() information
usage statistics
credentials
filesystem info
open files
namespaces
signal info
audit context info
...

Process states

Classic fork()

The way to make a new process

child_pid = fork();

Returns twice
Once to parent (returning child pid)
Once to child (returning zero)

The two processes are independent
copies

Inside fork()

Copy task_struct structure
Check resource limits
Copy:

Credentials Semaphores
Open files Filesystem info
Signal handlers Address space
Namespaces Block I/O context
...

Tracepoint [sched_process_fork]
Start new process

clone()

Sometimes processes want to share
Memory
Open files
...

The clone() system call allows sharing
Many flags to select resources to share
It's how threads are done on Linux
Sharing can be undone with unshare()

fork()

...is really just a wrapper around clone()

Threads

Threads on Linux are just processes

clone() flags used to share:
memory, files, signal handlers, ...

CLONE_THREAD flag
Sets thread group ID
Used for signal delivery

Per-thread stack created too

Sleeping (blocking)

There are three sleep states
TASK_INTERRUPTIBLE
TASK_UNINTERRUPTIBLE
TASK_KILLABLE

Simple sleeping

SYSCALL_DEFINE0(pause)
{

current->state = TASK_INTERRUPTIBLE
schedule();
return -ERESTARTNOHAND;

}

Old-style sleeping

/* Don't do it this way */
wait_queue_head_t waitq

while (need_to_sleep)
sleep_on(&wait);

/* ...somewhere else... */
need_to_sleep = 0;
wake_up(&waitq);

Better sleeping

wait_event(&waitq, condition);
wait_event_interruptible(&waitq, condition);
/* A vast number of variations */

/* ...or... */
prepare_to_wait(&waitq, &wqe, state);
if (! condition)

schedule();
finish_wait(&waitq, &wqe);

exit()

When a process is done
Reset signals
Release memory
Tracepoint [sched_process_exit]
Release other resources
Notify parent
task->state = TASK_DEAD;
schedule();

wait*()

Cleanup dead processes and return info
Tracepoint [sched_process_wait]
task->state = TASK_INTERRUPTIBLE
check for dead children
sleep if none
release task structure
return information

Signals

Signals can
Change process state
Force execution of signal handler
Interrupt system calls

It's complex stuff!

task_struct fields

struct signal_struct *signal;
Thread-group shared information
(including pending signals)

struct sigpending *pending;
Private pending signals

struct sighand_struct *sighand;
Signal handling information

sigset_t blocked;
List of blocked signals

Signal tracepoints

signal_generate
When a signal is queued for a process

signal_deliver
When a signal is delivered to a process

signal_overflow_fail
Realtime signal lost

signal_lose_info
Associated information lost

Kernel threads

Special processes for kernel tasks
Run in kernel mode
Have no user-mode address space

Look for [name in brackets]

Tracepoints
sched_kthread_stop
sched_kthread_stop_ret

Control groups

A mechanism for grouping processes

Cgroups have:
A position in a hierarchy
A list of processes
A set of attached “subsystems”
A mounted control filesystem

Under /sys/fs/cgroup by default

Cgroup subsystems

A means for affecting process behavior
CPU affinity
CPU scheduling
Block I/O bandwidth control
Namespaces
User-space (systemd)

Systemd cgroup hierarchy

`-- system
 |-- abrtd.service
 |-- atd.service
 |-- avahi-daemon.service
 |-- backups.mount
 |-- backups-vena.mount
 |-- console-kit-daemon.service
 |-- crond.service
 |-- cups.service
 |-- dbus.service
 |-- fsck@.service
 |-- getty@.service
 | |-- tty2
 | |-- tty3
 | |-- tty4
 | |-- tty5
 | `-- tty6

Associating cgroups and tasks

Cgroup notes

Code in kernel/cgroup.c
No tracepoints in cgroup code

See a process's info under
/proc/pid/cgroup

Under /sys/fs/cgroup you can
Create new groups
Query membership
Move processes between groups

Scheduling

CPU scheduling has two goals
Maximize system throughput
Minimize latency

They are often contradictory!

Once upon a time

We had the O(1) scheduler
Fast runqueue management
Lots of interactivity heuristics

Problems:
Difficult code
Poor interactivity

Completely fair scheduling

The core idea:
Dump all the heuristics
If there are N runnable processes

Each get 1/N of the available CPU time

Implementation

struct sched_entity {
 struct rb_node run_node;
 struct list_head group_node;
 unsigned int on_rq;

 u64 exec_start;
 u64 sum_exec_runtime;
 u64 vruntime;
 u64 prev_sum_exec_runtime;
 /* ... */
}

vruntime

The amount of CPU time the process
has used

...sort of

Time to pick a new task to run?
Grab the runnable task with the smallest
vruntime

Preemption

When should tasks be preempted?
Too rarely: bad latencies
Too often: bad throughput

CFS approach: try to bound latency
/proc/sys/kernel/sched_latency_ns
The period in which all tasks should run
Default: 6ms * (1 + log2(ncpus))

How long should a process run?

“Time slice” is dynamic:
sched_latency_ns / (# running tasks)

...but only to a point
sched_min_granularity_ns
The smallest a time slice will go
Default: 750s

Thus:
Latency will suffer as load gets high

Scheduling classes

The scheduler supports multiple classes
A strict priority arrangement

Three classes supported now:
Realtime (both RR and FIFO)
CFS (SCHED_OTHER)
Batch

pick_next_task()

To choose the next process to run:

for_each_class(class) {
p = class->pick_next_task(rq);
if (p)

return p;
}

Wakeups

task->state = TASK_RUNNING
Adjust vruntime

Adjust to new runqueue minimum
Possibly give credit for sleep

Put the task into the run queue
Possibly preempt running task

/proc/sys/kernel/sched_wakeup_granularity_ns
1ms * (1 + log2(ncpus))

Why struct sched_entity?

...instead of storing the info in the
task_struct directly?

Why struct sched_entity?

Control groups

Imagine:
Alice runs one movie player
Bob runs 9 compilers
...
Alice gets grumpy

Group scheduling

Give Alice and Bob their own groups

The groups are scheduled
50% for each

Each user's processes compete
...within their group

Balancing

The scheduler must:
Keep approximately equal load on all CPUs
Minimize migrations

Especially across NUMA nodes
Respect CPU affinity
Respect power management goals

It's complicated!

Scheduler tracepoints

sched_migrate_task
sched_switch
sched_wakeup
sched_wakeup_new
...

Credentials

Who does a process represent

What special capabilities does it have?

All found in task->cred

struct cred
struct cred {
 uid_t uid;
 gid_t gid;
 uid_t suid;
 gid_t sgid;
 uid_t euid;
 gid_t egid;
 uid_t fsuid;
 gid_t fsgid;
 unsigned securebits;
 kernel_cap_t cap_inheritable;
 kernel_cap_t cap_permitted;
 kernel_cap_t cap_effective;
 kernel_cap_t cap_bset;
 void *security;
 /* ... */
};

Capabilities

Finer-grained privileges
sort of

They include:
CAP_SYS_ADMIN
CAP_DAC_OVERRIDE
CAP_KILL
CAP_NET_BIND_SERVICE
CAP_SYS_RESOURCE
...

Capability sets

Effective
Capabilities which can be used now

Permitted
Capabilities which could be enabled

Inheritable
Those which can be passed to other
programs

Bounding
The maximum anybody can have

Capability checks

Typical code

if (!capable(CAP_SOMETHING))
return -EPERM;

Capability use is not traced
But PF_SUPERPRIV is set in the process
flags

Processes: related topics

Process address space
Resource accounting
Personalities
ptrace()
...

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

