

1: A kernel overview

Good morning!

The plan for the day

A quick overview of kernel development
Process management
Low-level memory management
Process memory management
The virtual filesystem
Locking

The kernel

The core of the operating system

The kernel

The kernel handles
Device management and abstraction
Memory management
Resource scheduling
Process management
Network communications
Security
...

Why the kernel matters

You cannot work around it
The kernel limits performance
It limits features

It shapes how the system is programmed

Some rules for kernel development

This discussion is vague and handwavy

It's important, though:
Much of what happens in kernel
development follows from these ideas

We'll get technical soon, I promise

1: Upstream first

Code goes into the mainline first
Before shipping to customers
Before user space depends on it
Before it's too late to change it

1: Upstream first

Example: Android wakelocks
User-space API not mergeable
Extensive changes needed in general
Merging of drivers held up

2: No differentiation

Originally
expressed by
Andrew Morton

See “upstream
first”

2: No differentiation?

“The RHEL6 kernel includes numerous
subsystems and enhancements from 2.6.34,
as well as its predecessor versions. As a
result, the RHEL6 kernel cannot be simply
labeled as any particular upstream version.
Rather, the RHEL6 kernel is a hybrid of the
latest several kernel versions.”

-- Red Hat Enterprise Linux Team

2: No differentiation

Example: out-of-tree drivers in Ubuntu
Developers are upset
Does not help the kernel progress
Potential copyright issues

...they are moving away from this practice

3: Technical quality

Code quality outweighs everything else
Company plans
Users desires
Existing practice
Developer status
Who got there first
...

3: Technical quality

Examples
Device Mapper and EVMS
Perf and perfmon2
Schedulers: O(1), Fair sched, CFS
devfs

3: Technical quality

How is quality measured?
Cleanness
Generality (multiple users)
Size and performance
Documentation
Developer reputation

4: Peer review

No code is so good it can't benefit from
another set of eyes

4: Peer review

Corollaries:
Trying to merge unreviewed code is a
mistake

Ignoring review comments is a good way
to keep your code out of the kernel.

5: Long-term view

We'll still be working on the kernel 5-10
years from now

5: Long-term view

The maintenance cost of every change
will be evaluated

5: Long-term view

Corollary: no internal API stability

“In Linux, we've rewritten our USB stack
three or four times. Windows has done the
same thing, but they had to keep their old
USB stack and a lot of their old codes in
order to work for those old drivers. So their
maintenance burden goes up over time while
ours doesn't.”

-- Greg Kroah-Hartman

5: Long-term view

Corollary: user-space ABI additions will
be scrutinized closely

They have to be supported forever!

6: No regressions

...not even to fix other problems

“So we don't fix bugs by introducing new
problems. That way lies madness, and
nobody ever knows if you actually make any
real progress at all. Is it two steps forwards,
one step back, or one step forward and two
steps back?”

--Linus Torvalds

7: Code talks

“Talk about high level designs rarely gets
any traction, and often goes nowhere. Give
us an example implementation so there is
something concrete for us to sink our teeth
into.”

-- David Miller

8: No ownership of code

Free software means giving up control.

9: Developers are individuals

...separate from their employers

10: Kernel development should be
fun

Getting the kernel

ftp.kernel.org (pub/linux/kernel/v2.6)

Git
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git

Distributor source packages

The kernel code tree

 2,190 directories
 33,209 files
9,187,929 lines of code

(2.6.37-rc3)

The kernel source tree

Lines Subdirectory
5,266,304 drivers/
1,774,426 arch/
 670,346 fs/
 479,641 sound/
 452,233 net/
 271,134 include/
 110,814 kernel/
 49,635 mm/

...

Licensing

Kernel code carries a variety of licenses
GPLv2
GPLv2+
BSD
public domain
...

The kernel as a whole is GPLv2

Licensing notes

Distribution of kernel code must be
done according to the terms of the
license

Licensing notes

The kernel has no copyright assignment
requirement

==> Thousands of copyright owners

Licensing notes

A change of license is highly unlikely

The DCO

Developers certificate of origin
1) I have the right to contribute this code
2) The kernel project can store my info

See Documentation/SubmittingPatches

In the beginning

...the computer is without form or
guidance.

Then the bootloader starts

The bootloader's job

Minimal hardware configuration

Load the system
Compressed kernel image
Initial ramdisk (if any)

Jump into the loaded kernel

Early boot

Perform some memory setup

Uncompress the kernel into place

A typical memory layout

00000000-00000fff : reserved
00001000-0009fbff : System RAM
0009fc00-0009ffff : reserved
000a0000-000bffff : Video RAM area
000c0000-000c7fff : Video ROM
000cee00-000cffff : pnp 00:0d
000d0000-000d0fff : Adapter ROM
000d1000-000d1fff : Adapter ROM
000d2000-000d3fff : pnp 00:0d
000e0000-000fffff : reserved
 000f0000-000fffff : System ROM
00100000-7e7affff : System RAM
 00400000-007acacd : Kernel code
 007acace-00a1cf6f : Kernel data
 00aa8000-00c2b8bf : Kernel bss

Bootstrap continues

The uncompressed kernel runs
IRQs disabled
Initialize data structures
Initialize scheduler
Turn on slab allocator
Connect to console
Create init and kthreadd tasks
Turn on the scheduler

The init task

Init's job:
Start all other CPUs
Complete hardware initialization
Delete bootstrap code
Run ramdisk init (if any)

That init should call pivot_root()
Exec the real init program

init, upstart, systemd, ...

At this point

There are two processes running
(init, kthreadd)

...maybe it's time to talk about
processes...

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

