Online Distributed Trace Synchroni

Masoume Jabbarifar
Michel Dagenais

=
, December 6, 2012
Ecole Polytechnique, Montreal

Outline

Streaming Mode Incremental Clock Synchronization
Reference Node Selection in Dynamic Tree

Minimum Spanning Tree Maintenance in Dynamic Tree

Key problem
Methodology
Experimental results
Conclution

Key problem

Problems and solutions

" Accuracy: The generated events are
at the nanosecond scale.

" Performance: The analysis speed
must be the same as, or higher than,
the data rate.

" Data buffering: The gathered data
from a computer cluster is huge but
the required data is smaller.

" Delay: Little delay must be added by
analysis for tracing to diagnose
problems and attacks in real time

" Convex-hull algorithm: This algorithm
guarantees the best accuracy.

" Incremental algorithm: It refreshes
synchronization as it receives accurate
data.

" Layered improvements: Proposed
online synchronization methods
improve performance in different
layers;

1) Indivitual connection
2) In a computer network

3) Time reference updates

“Streaming Mode Increment
Synchronization®

Two Clocks Synchronization

Convex-Hull

(A = Sent and Received messages sets

" Guarantees no message inversion

" Two lines with Max & Min slope
Lmax - amaxe-l-lB
Lmin B amin9+'B

min
max

Accuracy = a —«

min

Bmx ..‘.,..‘......

A\

* The bisector of the angle formed by these

two lines

C,ltl = aCylt)+p

Time Interval based approaches (1)

Independent Window

Advantages

= Performance Absent Approximate Accuracy=0.65 Accuracy=0.2 absent

" No buffering

= Simple to implement

Disadvantages
* Accuracy

w1 w2 W3 w4 W5

Time Interval based approaches (2)

Replacement approach

Advantages

Absent Approximate Accuracy=0.65 Accuracy=0.2 Accuracy=0.2
" Performance

= Simple to implement

Disadvantages Wi W2 W3 Wa e
= High level accuracy is unobtainable

Time Interval based approaches (3)

Correlated approach

tef Advantages

(B3, &3)

" The highest level of accuracy
" No buffering

" Processing is postponed to the end of each
window

~ Y

]

|
|
|
|
|
|
|
| Disadvantages
|
|
|
|
|
|
|
|

window, window,

Fully incremental Approach (1)

No window concept

" The highest level of accuracy
" No buffering
" No delay

Fully Incremental Approach (2)

Stepl: wait to establish at least three messages in each direction
Step2: Look for accurate messages

If the pair is not qualified, it is dropped .~ .
(08,8 Detection method:
- . ;- [O "‘ @ \
., (05,&5) A accurate
............... O Giied) miseshge Lower bound
(0%.€5)
R (65,85) o
(07,&7)
Upper bound
(63, &)
%95@3)
7 G
an

Fully Incremental Approach (3)

Accurate Message Improves Sycnhronization Accuracy

- accuracy is the difference between the minimum and maximum possible drifts between the
two clocks

Accuracyl=L1__ .drift—L1_. .drift

i :
L L2 drift

2&3)

accurate L1 .drift>L2_ .drift

message

Accuracyl>Accuracy2

Fully Incremental Approach (4)

Step3: adjust-bounds

" Only Lmax or Lmin is changed when an accurate pair is received

Update Lmax " =
Cf(te)
tE A
o9
(6%,&%)
(81,55} . Pty
Bmx _,__.___._...‘...
B rte

Each synchronization in the Fully Incremental
approach requires O(1) time, on average

Results (1)

Accuracy

0.00086

0.0005

0.0004

0.0003

0.0002

0.0001

=

[T 1 |

L —&— Fully-Incremental approach
ﬁ —=— Correlated approach

h —a— Independent approach

I = Replace approach

B

i

1

Time (sec.)

Results (2)

0.0006

0.0005

0.0004

0.0003

Accuracy

0.0002

0.0001

E—

| |
—+=— Fully-Incremental approach

—m=— Correlated approach
h —=— Independent approach]
i ® Replace approach
i | |
s 5e-06 T I
—=— Fully-Incremental approach
— 4.5e-06 —m=— Correlated approach
j 11 —a— Independent approach
| 4e-06 - Replace approach
3.5e-06
g 4
©
S 3e-06 K
£
o 2.5e-06
2e-06
1.5e-06

Average delay =0.91 sec

10 15 20 25
Time (sec.)

Fully incremental Approach (5)

No window consideration

Advantages

" Performance: Each synchronization requires O(1) time, on average.
High level time accuracy

No delay

No buffering

Features

" Analysis: Appropriate data are filtered prior to synchronization computations.

Key problem

Refrence Node Selection

1) For any node in Spanning Tree, the
shortest paths to every other node are
computed.

2) The best time reference node (RN) is the
node which has the smallest paths to all.

3) All nodes in the network synchronize their
time with the reference node through
those paths.

" It takes O(n"2) time to find the RN.
= A fixed RN?
- Costs synchronization accuracy.
- A single point of failure.

Reference Node Position

Total accuracy

" The position of RN is critical to
decrease the total time conversion error @

through all paths. " WN
Ti<v,v,, v > @ @
o o w, w2 w5 w8
Pvi< VoVi sy ooy RN W) B (8
n | OW6
. e . v6
Total Synchronization Error,, = Z Z wezghtejon P,

i=1j=1

Dynamic Reference Node (1)

New Node Connection

a)

b)

c)

d)

€)

RN

=0 , ® (D@40
O @ ® 0
S0, 2 S
O 0y

o m
@D o
@ @ @

= The number inside each vertex shows
the Descendant Size

" Propagation along the path from the
parent of “v” to the RN

" Comparison between two nodes

Dynamic Reference Node (2)

Cycle/ Cut and Add (1)

Small path Extended path
e e " Orphan path: <02, ..., on-1>

,f e i .

. " Small path: <s1,s2,...,sn>
D—@ -
(L Tou " Extended path: <el,e2,..,en>
add .~
Orphan path P
O O

RN is in Extended path

Dynamic Reference Node (3)

Cycle/ Cut and Add (2)

" RN does not change when:
- Cut and add are in one side of RN
- RN has many branches

reverse(e;)

A= ¢(a)
N~
cut impact
the new DescendantSize for previous reference node

Bl =) — [Eeemi) b

€En

{ % if £(x) > treeSize(x)/2
—_— ——

tree balance value
search in extendedPath otherwise

Dynamic Reference Node (4)

Joining Two Trees

. 1) Edge (RNST, RNBT) — RNer

CO—RY¢—(m) -+ (p)e—) 2) Edge (RNsr, €i) —

Reverse path <ei, ei+1, ..., RNsr>

Small Tree

‘add
3) Edge (mi, RNsr) = RNer
Reverse path < RNsr.mq, ..., mn>

4) Edge (msr, esr) — RNer
Reverse path < RNsr.mq, ..., mn>
Candidate RN € <ej, €i+1, ..., RNsr>

Data set (1)

Number of each operation, from one million operations

Cycle
Nodes Insertion Join Stay! Remove? | updateEdge
Datasety 10000 4991 2503 45449 946879 178
Dataseta 20000 9892 5052 76404 908556 96
Datasetzs 30000 15005 7496 102672 874761 66
Datasetsa 40000 19955 10021 125650 844322 52
Datasets 50000 24959 12519 | 145733 816753 36
Datasetg 60000 29953 15022 | 164104 790885 36
!'the new connection stay in loop and other edge in cycle is removed by MST
algorithm.
2 the new connection has the highest weight in cycle and is removed by MST
algorithm
RN changes
Insertion Join Cycle
Number! wingy? % losepy® % Number* wingy % lose % Number® wingy % losepy %
Datasety 4991 732 15% 4259 85% 2503 1464 8% 1039 42% 45449 1186 3% 44263 97%
Datasety 9892 1435 14% 8457 86% 5052 2972 T0% 2080 30% 76404 1259 2% 75145 98%

Datasety 15005 2270 15% 12735 85% 7496 4439 59% 3057 41% | 102672 1508 2% 101164 98%
Datasety 19955 2986 15% 16969 85% 10021 5847 58% 4174 42% | 125650 1365 1% 124285 99%
Datasets | 24959 3675 15% 21284 B5% 12519 7298 58% 5221 42% | 145733 1432 1% 144301 99%
Datasets | 29953 4373 15% 25580 B5% 15022 8839 59% 6183 41% | 164104 1776 1% 162328 99%

I The total number of cases where a vertex add to existent tree. Note that other cases belong to two new vertices connections which makes a new tree. In recent
case one of vertices is selected as RN and there is no computation to find RN.

2 The number of cases that RN changes.

3 The number of cases that RN does not change.

* The number of cases that two trees merge in the forest.

3 The number of cases that an edge makes cycle in one of trees in the forest.

Data sets (2)

Merge positions

RNS—RNb m@—RNb RNS—BQ' m; — €;
Dataset; 0 190 80 2233
Datasets 0 440 161 4451
Datasets 0 595 232 6669
Datasety 0 819 339 8863
Datasets; 0 1035 420 11064
Datasetg 0 1238 474 13310

Number of descendant Size update in each operation

Insertion Join Cycle
Avg. Distance Avg. Distance Avg. Distance
Number Update to RN Number Update to RN Number Update to RN
Datasety | 4991 89985 18 2503 50930 20 45449 3431773 75.5
Datasets | 9892 246827 25 5052 128818 25.5 76404 7614996 100
Datasets | 15005 366967 24 7496 191811 26 102672 12250493 119
Datasets | 19955 513153 26 10021 275419 27.5 125650 15740773 127
Datasets | 24959 762460 31 12519 398419 32 145733 18804027 129
Datasete | 29953 1018792 34 15022 540992 36 164104 23822448 145

Result

Updating the reference node in a dynamic network with one million operations

Proposed method O(log n)
5e+06 5 5 1 !

1.4e+09

1.2e+09

40408 | e |

1e+09
e+ 38+DE I o o - L u

8e+08

Microsecond

58""[]’8 Ee+[}5 L ¢ ¢ ¢

4e+08

10406 | i
2e+08 _—

0 0
10000 20000 30000 40000 50000 60000 10000 20000 30000 40000 50000 60000

Mumber of Nodes Mumber of Nodes

10000 nodes= 32.53 sec. 10000 nodes= 0.33 sec.
60000 nodes= 1549.92 sec. 60000 nodes= 4.92 sec.

“Minimum Spanning Tree Maii ¢
in Dynamic Tree*

Kruskal's Algorithm for Minimum Spanning Tree

" Running Time = O(mlog n) m = edges, n = nodes
" The steps are:
1) The edges are placed in a priority queue

2) Until we have added n-1 edges
I. Extract the lowest edge from the queue
Ii. If it forms a cycle, eliminate it

Il. Else add it to the tree

Challenges in Dynamic Minimum Spanning Tree

= Two cases can occur:
1) Edge is in Tree and new weight is less than previous (no effect)
- It is the characteristic of Fully incremental Approach

Accuracy, . <Accuracy previous

1) Edge is not in Tree
- Add without cycle (no effect)
- Add with cycle (effect)

Dynamic MST

Loop in MST

Make vertex h the root of its tree

()
Evert (h) e 6
= 23 ofo}jjo
H O O
@ ©

Data set

Number of each operation, from one million operations

Nodes Added link. Removed link Total
Dataset1 10000 45449 946879 992328
Dataset? 20000 76404 908556 984960
Datasets 30000 102672 874761 977433
Datasets 40000 125650 844322 969972
Datasets 50000 145733 816753 062486
Datasets 60000 164104 790885 954989

1) The new connection is added to the MST and one of other edges in the cycle is removed by
MST algorithm

2) The new connection has the highest weight in cycle and is removed by MST algorithm

Result

® Old approach requires 1.440216 sec. to find MST once in a cluster with 10000 simulated nodes.

" For 992328 changes in MST: 992328* 1.440216 = 1429166.662848 sec. ~ 396 hours = 16.5
days!!

Proposed method O(log n)

7e+06

6e+06

5e+06

4e+06

Microsecond

3e+06

2e+06

1e+06

0 i i i i
10000 20000 30000 40000 50000 60000
Number of Nodes

10000 nodes= 0.36 sec.
60000 nodes= 7.79 sec.

Conclusion

" Resynchronization rate per edge
- Performance: Each synchronization requires O(1) time, on average.
- High level time accuracy
- No delay
- No buffering

" Resynchronization rate per network
- Reference node selection
- Synchronization path update
- Performance: Each update requires O(log n) time, on average.

" Error reduction and continuity
= Scalability
" Robustness

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

