Automated Fault Identification

Hashem Waly
Béchir Ktari

Département d’'informatique et de génie logiciel
Faculté des Sciences et de Génie
Université Laval, Québec, Canada

December 10, 2009
Montréal, Canada

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009

© Introduction
@ Motivation
@ System Architecture

© Malicious Traces
@ Scientific Model
@ Security
@ Testing Programs
@ Debugging
@ Discussion

© Scenario Description Languages
@ Scientific Model
@ Scenario Description Languages
@ Discussion

@ Conclusion

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 2/ 79

Agenda

© Introduction
@ Motivation
@ System Architecture

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 3/ 79

Agenda

© Introduction
@ Motivation

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 4 /79

@ Malicious activities, performance bottlenecks, and debugging
important events in a system are kinds of behaviors that are essential
in the surveillance and maintaining the reliability of large systems.

@ The detection of such behaviors has become a more challenging task

with the emergence of multi-core, multi-threaded processes and the
higher level of inter connectivity (between networked systems).

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 5/ 79

@ Automating the detection of malicious behaviors, performance
degradation, and software bugs, in the context of
multi-core/multi-processor CPUs, and distributed systems.

@ Avoid to affect the performance of the system being analyzed.

@ Integration within a software development environment (Eclipse).

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009

Intrusion Detection Systems (IDS)

Based on the type of intrusions:

@ Host-based

o Network-based
Based on the detection techniques:

@ Signature-Based

@ Anomaly-Based

@ Intermediate approach (Policy-Based)
Based on the detection engine:

@ On-line

o Off-line

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009

Signature-Based (IDS)

Antivirus Behaviors

Search for the occurrence of a specific set of characters (usually) at the
beginning of files.

H. Waly and B. Ktari (Université Laval)

State of the Art

December 10, 2009 8/ 179

Signature-Based (IDS)

Rule-Based

Specify one rule for describing attacks.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 8/ 179

Signature-Based (IDS)

Scenario-Based

Abstract the attack to be a scenario composed from a set of high level
events.

. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 8/ 179

Signature-Based (IDS)

Policy-Based

Detects anomalies that violate policy rules rather than a learned behavior
considered to be "normal".

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 8/ 179

\VHESIES

Build a list of low level problems and collect a database of good traces and
of traces illustrating typical problems.

K1.2

Study various languages that may be suitable to describe different fault
patterns. Compare their expressiveness, potential for performance, and
applicability to detect a wide range of problems.

| A

. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 9/ 79

Agenda

© Introduction

@ System Architecture

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 10 / 79

Architecture

H. Waly and B. Ktari

iversité Laval)

Kernel
Traced

State of the Art

December 10, 2009

11 / 79

Architecture

H. Waly and B. Ktari

iversité Laval)

Kernel
Traced
with LTTng

security

policies

State of the Art

December 10, 2009

11 / 79

Architecture

H. Waly and B. Ktari

iversité Laval)

Kernel
Traced

security
policies

Analysis
Engine

State of the Art

December 10, 2009

11 / 79

H. Waly and B. Ktari

niversité

Laval)

Kernel
Traced
with LTTng

security
policies

Analysis
Engine

Alarms

Alerts (Red, Green, ...)
System State

State of the Art

December 10, 2009

11 / 79

H. Waly and B. Ktari

Kernel
Traced
with LTTng

security
policies

Online Analysis

Analysis
Engine

Alarms
Alerts (Red, Green, ...)
System State

State of the Art

December 10, 2009

© Malicious Traces
@ Scientific Model

@ Security

@ Testing Programs
@ Debugging

@ Discussion

H. Waly and B. Ktari (Université Laval)

State of the Art

December 10, 2009

12 / 79

What kind of problems?

@ Very wide range of problems.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 13 /79

What kind of problems?

@ Refine The problems into three

roups.
Performance group

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 13 /79

What kind of problems?

Performance

H. Waly and B. Ktari (Université Laval)

State of the Art

group:
o Clients requirements.
e Domain classics (Buffer
overflow, deadlock, ...).
o Litterature review.

December 10, 2009

@ Select a set of problems for each

13 / 79

© Malicious Traces
@ Scientific Model

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 14 / 79

Scientific Model

Problem identification

@ Problem Description.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 15 / 79

Scientific Model

I Problem identification I
o
o

Problem Generation (code re-use, -
Code

or self-development)

o I Code Generation I

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 15 / 79

Scientific Model

I Problem identification I

o

o
Program
Code

@ LTTng Trace analysis (refine the Code Ceperation

trace and study relevant events).

LTTng Trace Analysis

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 15 / 79

Scientific Model

I Problem identification I

°
°
Program
Code
[+ Code Generation
e Study Good Traces. P

° LTTng Trace Analysis

°

H. Waly and B. Ktari i ité State of the Art December 10, 2009 15 / 79

Scientific Model

'Y I Problem identification I

Program
Code
°
Code Generation
@ Study Good Traces.
Compare 2
o
Trace
o Good Traces

H. Waly and B. Ktari iversité Laval) State of the Art December 10, 2009

Scientific Model

'Y I Problem identification I

Program
Code
("]
Code Generation
]
° L t . Compare)
anguage properties g Trece Amaiye
J Good Traces

Language Properties

H. Waly and B. Ktari iversité Laval) State of the Art December 10, 2009

Scientific Model

@ Analysis (alternate attacks,

solutions, references to threads

Databases).

H. Waly and B. Ktari

Compare
to original
Trace

I Problem identification I

Program
Code

Code Generation

B

LTTng Trace Analysis

Good Traces

Language Properties

Analysis (alternate
attacks, solutions, ...

State of the Art

December 10, 2009

© Malicious Traces

@ Security

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 16 / 79

Malicious Traces

Security
@ File permissions and attributes.

o Escaping a chroot Jail.
o Race conditions on files.

@ Privilege Escalation.
o Abusing setuid function.
o Buffer Overflow.
o Networks.
o SYN Flood attack.
@ Viruses.

o Virus installation
o Linux RST.b virus.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 17 / 79

Malicious Traces

Security
@ File permissions and attributes.

o Escaping a chroot Jail.
e Race conditions on files.

Testing Programs

@ Using File Descriptors

@ Privilege Escalation. o Deadlock
e Abusing setuid function. e Error-Handling
e Buffer Overflow.
@ Networks.
e SYN Flood attack.
@ Viruses.

o Virus installation
o Linux RST.b virus.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 17 / 79

Malicious Traces

Security
@ File permissions and attributes.

o Escaping a chroot Jail.
e Race conditions on files.

Testing Programs

@ Using File Descriptors

@ Privilege Escalation. o Deadlock
e Abusing setuid function. e Error-Handling
o Buffer Overflow. System Performance
o Networks. o Inefficient 1/0
e SYN Flood attack. @ Real-time Applications

@ Viruses.

o Virus installation
o Linux RST.b virus.

@ Excessive Swapping

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 17 / 79

Malicious Traces

Security
@ File permissions and attributes.

o Escaping a chroot Jail.
e Race conditions on files.

Testing Programs

@ Using File Descriptors

@ Privilege Escalation. o Deadlock
e Abusing setuid function. e Error-Handling
o Buffer Overflow. System Performance
o Networks. @ Inefficient 1/0
e SYN Flood attack. @ Real-time Applications

@ Viruses.

o Virus installation
o Linux RST.b virus.

@ Excessive Swapping

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 17 / 79

Race Conditions on files - Problem Description

Race Condition occurs when a system or a device assumes to perform two
or more operations atomically while they are not.

o

Race condition on files

Binding the name to an object changes between repeated references occur
in many programs

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 18 / 79

Race Conditions on files - Problem Generation

if (access("/tmp/X", W OK) = 0) {
unlink ("/tmp/X");
symlink ("/etc/passwd"," /tmp/X");
if ((fd = open("/tmp/X", O WRONLY)) = —1) {
perror ("/tmp/X");
return (0);

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 19 / 79

Race Conditions on files - Problem Generation

[file sys(f1)]
link(f1,f2)
{save_pid();
save fname(f1,f2)} [same_ pid();
same_fname(f1)]

[same_pid()
same_fname(f2)]

unlink(f2);

Figure: Race condition FSM

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 20 / 79

Race Condition on files - LTTng Trace

31269, 0x0, USER MODE { ret = 0 }

31269, 0x0, USER_MODE { ret = 0}

31269, 0x0, USER MODE { ret = 0 }

kernel.syscall entry: 105.11303 (./kernel_ 1), 7914, 7914, ./race_ violation,
31269, 0x0, SYSCALL { ip = 0xb7fc3430, syscall_ id = 33 [sys access+0x0/0x30]}

kernel.syscall exit: 1305.36650(./kernel 1), 7914, 7914, ./race violation,
kernel.syscall entry: 1305.01835 (./kernel 1), 7914, 7914, ./race
31269, 0x0, SYSCALL { ip = 0xb7fc3430, syscall id = 10 [sys unlink+0x0/0x20] }
kernel.syscall exit: 1305.35302 (./kernel_l), 7914, 7914, ./race_violation,

kernel.syscall entry: 1305.85091 (./kernel_ 1), 7914, 7914, ./race_
31269, 0x0, SYSCALL {ip = 0xb809a430, syscall_id = 83[sys_symlink4+0x0/0x30]}
kernel.syscall exit: 1305.35302 (./kernel_ 1), 7914, 7914, ./race_violation,

kernel.syscall entry: 1305.28196 (./kernel 1), 7914, 7914, ./race
31269, 0x0, SYSCALL { ip = 0xb809a430, syscall_id = 5 [sys open+0x0/0x40]}

violation ,

violation ,

violation ,

Figure: LT Tng trace of Race conditions on files

H. Waly and B. Ktari

iversité Laval) State of the Art December 10, 2009 21 /79

Race Conditions on files - Language properties

The properties of the language are summarized as follows:
© Scenario based on multiple events
@ Conditional Transitions
© Variables
Q@ Grouping

© Real-time Constraints

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 22 /79

Race Conditions on files - Good traces

if (access(filename, W OK) = 0) {

if ((fd = open(filename, O WRONLY)) = —-1) {
perror(filename);
return (0);

write(fd,"hello\n" ,6); //write to file
close (fd);

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 23 /79

Race Conditions on files - Discussion

Real security threads
@ Kumar and Spafford gain root access on unix systems using the
superuser's privileges.
@ S. Kumar and E. Spafford.
“An Application of Pattern Matching in Intrusion Detection”.

Technical Report 94-013, Department of Computer Science, Purdue
University, 1994.

@ Bishop and Dilger, on SunOS and HP/UX systems, gain root access
by interleaving the operation of passwd process.

@ M .Bishop and M .Dilger.
“Checking for Race Conditions in File Accesses”.
The USENIX Association, Computing Systems, Vol. 9, No. 2, pp. 131-152,
1996.

@ Advisory-5.UNIX.mail Binmail race condition.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 24 / 79

Abusing setuid - Problem Description

Privilege Escalation It's the act of exploiting a bug or design flaw in a software
application to gain access to resources which normally would have been protected from
an application or user.

If the process runs with elevated privileges, it's not secure to execute risky activities:
openning a shell with administrator privileges,

@ D. Dean, H. Chen and D. Wagner.

“Model checking one million lines of C code”.
Proceedings of the 11th Annual Network and Distributed System Security Symposium, 2004.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 25 /79

Abusing setuid - Problem Description

Problem

Privilege Escalation It's the act of exploiting a bug or design flaw in a software
application to gain access to resources which normally would have been protected from
an application or user.

If the process runs with elevated privileges, it's not secure to execute risky activities:
openning a shell with administrator privileges,

@ D. Dean, H. Chen and D. Wagner.

“Model checking one million lines of C code”.
Proceedings of the 11th Annual Network and Distributed System Security Symposium, 2004.

setuid();
{save pid();
save uid()}; execl();

. a o [same_pid()] @

setuid(original _uid);
[same_ pid()]

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009

Abusing setuid - Problem Generation & LT Tng Trace

setuid(0) ;
execl("/bin/sh","/bin/sh",NULL) ;

kernel.syscall _entry: 595.3171 (./Trace/kernel_0), 20223, 20223, ./Privilege
20222, 0x0, SYSCALL { ip = 0xb8068430, syscall id = 213 [sys setuid4+0x0/0xe0]}

kernel.syscall exit: 595.06439 (./Trace/kernel_0), 20223, 20223, ./Privilege
20222, 0x0, USER MODE { ret = 0}

kernel .syscall entry: 595.71835 (./Trace/kernel 0), 20223, 20223, ./Privilege
20222, 0x0, SYSCALL { ip = 0xb8068430, syscall id = 11 [ptregs execve+0x0/0x10] }
fs.exec: 18595.918502002 (./Trace/fs 0), 20223, 20223, /bin/sh

20222, 0x0, SYSCALL filename = "/bin/sh"

kernel.syscall exit: 595.03611 (./ T Tracekernel 0), 20223, 20223, /bin/sh,

20222, 0x0, USER_MODE { ret = 0 } -

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 26 / 79

Abusing setuid - Customizing LT Tng trace

LT Tng provides by default a general information about the events running
on the system.

@ Enabling/Disabling markers (which represents the type of events
printed in trace files).

@ Customizing the information provided about the events (like the Event
Parameters).

o TracePoints
o Markers

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 27 /79

Abusing setuid - Customizing LT Tng trace (continued)

@ Find the implementation ("./kernel/sys.c").
@ Define the marker

© Compile
Q Trace
SYSCALL DEFINE1l(setuid , uid t, uid)
{
trace_mark(kernel, syscall setuid, "UID %d", uid);
¥

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 28 / 79

Abusing setuid - Customizing LT Tng trace (continued)

kernel.syscall entry: 595.03171 (./Trace/kernel_0), 20223, 20223,./Privilege
20222, 0x0, SYSCALL { ip = 0xb8068430, syscall _id = 213 [sys_setuid+0x0/0xe0] }

kernel.syscall setuid: 595.01131 (./Trace/kernel_0), 20223, 20223,./Privilege
20222, 0x0, SYSCALL { UID = 1000

kernel.syscall exit: 595.06439 / Trace/kernel _0), 20223, 20223, ./Privilege

_ (-
20222, 0x0, USER_MODE { ret = 0}

State of the Art December 10, 2009 29 / 79

H. Waly and B. Ktari (Université Laval)

Abusing setuid - Good Traces

@ Change the user ID of the process.
@ Perform privilege capabilities

@ Return to the normal user ID.

if (setuid(0) == -1){
printf ("ERROR: %s\n",strerror(errno));
}
//execute the commands as privileged users
//chroot for example
chroot ("/home/hamowl/myjail") ;
chdir("/");
//return to your user ID
if (setuid(original uid) == -1){
printf ("ERROR: %s\n",strerror(errno));

)

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 30/ 79

Good Traces

kernel .syscall entry:178828.081389920(./ Trace/kernel\ 0), 24896, 24896, ./priv,
5870, 0x0, SYSCALL { ip = 0xb7f23430, syscall id = 213 [sys setuid+0x0/0xe0] }
kernel.syscall exit:178828.081391660(./ Trace/kernel 0), 24896, 24896, ./priv,
5870, 0x0, USER MODE { ret = 0 } -

kernel.syscall entry:178828.081395540(./ Trace/kernel 0), 24896, 24896, ./priv
5870, 0x0, SYSCALL { ip = 0xb7f23430, syscall id = 61 [sys chroot+0x0/0xa0]}
kernel.syscall exit:178828.918503611(./ Trace/kernel 0), 24896, 24896, ./priv
5870, 0x0, USER MODE { ret = 0} -

kernel.syscall _entry:178828.081401405(./ kernel_0), 24896, 24896, ./priv
5870, 0x0, SYSCALL { ip = 0xb7f99430, syscall_id = 12 [sys_ chdir4+0x0/0x80]}
kernel.syscall exit:178828.081402218(./kernel_0), 24896, 24896,./priv,
5870, 0x0, USER MODE { ret = 0 }

kernel .syscall entry:178828.081402849(./ Trace/kernel 0), 24896, 24896, .\—/priv
5870, 0x0, SYSCALL { ip = 0xb7f23430, syscall id = 213 [sys setuid+0x0/0xe0]}
kernel.syscall exit:178828.081405461(./ Trace/kernel 0), 24896, 24896, ./priv,
5870, 0x0, USER MODE { ret = 0 } B

H. Waly and B. Ktari iversité Laval) State of the Art December 10, 2009 31/ 79

Language Properties

setuid();
{save_pid();
save uid()}; execl

start —

setuid(original _uid);
[same pid()]

@ Scenario based on multiple events.
@ Conditional Transitions.

© Variables.

@ Grouping.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009

SYN Flood attack - Problem Description

Problem

The SYN flood attack is a denial of service attack that consists in flooding
a server with half-open TCP connections. Once all resources set aside for
half-open connections are reserved, no new connections (legitimate or not)
can be made, resulting in denial of service.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 33/ 79

SYN Flood attack - Problem Generation

SYN
{save pid();

. h
start _timer()}; other

Timeout

[same _pid();] @

start — 6

ACK
[same_pid()]

sock = socket (PF_INET, SOCK STREAM, IPPROTO_ TCP);
connect(sock, (struct sockaddr x) & echoServAddr,

sizeof (echoServAddr));
send (sock, echoString, echoStringlLen, 0) != echoStringlLen);
//bytesRcvd = recv(sock, echoBuffer , RCVBUFSIZE—1,0);

December 10, 2009 34 /79

. Waly and B. Ktari (Université Laval) State of the Art

SYN Flood attack - LTTng Trace

kernel.syscall entry: 597.42938 (./Trace/kernel 0), 15731, 15731, ./flood,
14070, 0x0, SYSCALL {ip = 0xb7fd2430, syscall id=102 [sys socketcall4+0x0/0x320]}

net.socket call: 754.66029 (./Trace/net 0), 15731, 15731, ./flood,

14070, 0x0, SYSCALL { call =1, a0 = 2 }

net.socket create}: 597.61169 (./Trace/net 0), 15731, 15731, ./flood ,14070,
0x0, SYSCALL { family = 2, type = 1, protocol = 6, sock = 0xf17e5800, ret = 3 }

kernel.syscall exit: 597.61926 (./Trace/kernel 0), 15731, 15731, ./flood,
14070, 0x0, USER MODE { ret = 3 }

kernel.syscall entry: 597.73730 (./Trace/kernel_0), 15731, 15731, ./flood ,14070,

0x0, SYSCALL { ip = 0xb7fd2430, syscall id = 102 [sys socketcall+0x0/0x320] }
net.socket call: 597.74407 (./Trace/net_0), 15731, 15731, ./flood,
14070, 0x0, SYSCALL { call = 3, a0 = 3}

net.socket connect: 597.89308 (./Trace/net_0), 15731, 15731, ./flood,

14070, 0x0, SYSCALL { fd = 3, uservaddr = 0xbf868b04, addrlen = 16, ret = 0 }
kernel .syscall exit: 597.89498 (./Trace/kernel 0), 15731, 15731, ./flood,
14070, 0x0, USER MODE { ret = 0 } -

kernel .syscall entry: 597.85438 (./Trace/kernel 0), 15731, 15731, ./flood 14070,
0x0, SYSCALL { ip = Oxb7fd2430, syscall id = 102 [sys socketcall+0x0/0x320]}
net.socket call: 597.99178 (./Trace/net 0), 15731, 15731, ./flood,

14070, 0x0, SYSCALL { call =9, a0 = 3 }

kernel .syscall exit: 597.94148 (./Trace/kernel 0), 15731, 15731, ./flood,
14070, 0x0, USER MODE { ret = 5 } -

H. Waly and B. Ktari iversité Laval) State of the Art December 10, 2009 35 /79

SYN Flood attack - Language properties

© Scenario based on multiple events
© Conditional Transitions

© Variables

Q@ Grouping

© Real-time Constraints

O Synthetic Events

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 36 /79

SYN Flood attack - Good traces

sock = socket (PF_INET, SOCK STREAM, IPPROTO_ TCP);
connect(sock, (struct sockaddr %) & echoServAddr,

sizeof (echoServAddr));
send (sock, echoString, echoStringlLen, 0) != echoStringlLen);
bytesRcvd = recv(sock, echoBuffer ,RCVBUFSIZE—1,0);

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 37 /79

SYN Flood attack - Discussion

Different network attacks
@ Sniffing
o Brute Force
o Buffer Overflows
e Spoofing
@ Flooding

An attack that is sensitive in time between events (Real-time constraints).
Could be used to describe more attacks.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 38 /79

© Malicious Traces

@ Testing Programs

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 39 /79

Deadlock - Problem Description

A deadlock is a situation wherein two or more competing actions are
waiting for the other to finish, and thus neither ever does.

v

Locking Validator

For validating the occurence of deadlock in programs but there exists a lot
of cases that is difficult to detect

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 40 / 79

Deadlock - Generation

PID | holding ID | waiting for ID
1 a b
3 d :
2 b a
waits_ for()
Thread 1 Thread 2
waits_ for

Figure: Race condition FSM

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 41 / 79

Deadlock - Problem Description

request _lock(id); wait_ for(id e i
start _)./—\ \—j dealeCk check
acquire_lock(id); release lock(id)

deadlock

(s)

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 42 / 79

Deadlock - Problem Generation

void xfunctionl ();
void xfunction2 ();
pthread mutex_t mutexl
pthread mutex t mutex2
int main()

PTHREAD _MUTEX _INITIALIZER;
PTHREAD _MUTEX _INITIALIZER;

int rcl, rc2;

pthread t threadl, thread2;

if((rcl=pthread create(&threadl, NULL, &functionl , NULL)))
printf("Thread creation failed: %d\n", rcl);

if((rc2=pthread create(&thread2, NULL, &function2, NULL)))
printf("Thread creation failed: %d\n", rc2);

pthread join(threadl, NULL);

pthreadijoin(thread2, NULL);

exit (0);

void xfunctionl ()

pthread mutex lock(&mutexl);
pthread mutex lock(&mutex2);
pthread mutex _unlock(&mutex2);
pthread mutex_unlock(&mutexl);

void xfunction2()

pthread mutex lock(&mutex2);
pthread mutex lock(&mutexl);
pthread mutex unlock(&mutexl);
pthread mutex unlock(&mutex2);

}

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 43 / 79

Deadlock - Language properties

Scenario based on multiple events
Conditional Transitions

Variables

Grouping

Global structure

Real-time constraints

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 44 / 79

© Malicious Traces

@ Debugging

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 45 / 79

Inefficient 1/O - Problem Description

o Inefficient 1/0O

o Frequent writing of small chuncks of data.

o Writing latency (timeout) to disk (maybe due to disk saturation, ...).
o Reading twice the same data.

e Reading the data that has been just written to disk.

@ Real-time applications constraints.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 46 / 79

Inefficient 1/O - Problem Description

o Inefficient 1/0O

e Frequent writing of small chuncks of data.

o Writing latency (timeout) to disk (maybe due to disk saturation, ...).
o Reading twice the same data.

e Reading the data that has been just written to disk.

@ Real-time applications constraints.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 46 / 79

Inefficient 1/O - Problem Description

write _small(fd);

{save Pid()' counter > limit

|ncr counter [same pld

@ =16
start —

close(fd);

[same_pld()]

fd = open("/home/hashem/test2.txt", O_RDONLY);
for(i=0;i<100;i++){

write(fd,"a",1);
}

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 47 / 79

Inefficient 1/O - LT Tng Trace Details

o kernel.syscall_entry: 103158.477573944 (./Trace/kernel_0), 19035, 19035, ./perf, , 17201, 0x0,

USER_MODE ip = 0xb7£6d430, syscall_id = 5 [sys_open+0x0/0x40]

e fs.open: 103158.47758115 (./Trace/fs_0), 19035, 19035, ./perf, , 17201, 0x0, SYSCALL

fd = 3, filename = "/home/hashem/test2.txt"

e kernel.syscall_exit: 103158.477582114 (./Trace/kernel_0), 19035, 19035, ./perf, , 17201, 0x0,

USER_MODE ret = 3

o kernel.syscall_entry: 103158.477582836 (./Trace/kernel_0), 19035, 19035, ./perf, , 17201, 0x0,

USER_MODE ip = 0xb7£6d430, syscall_id = 4 [sys_write+0x0/0xb0]

e fs.write: 103158.477637465 (./Trace/fs_0), 19035, 19035, ./perf, , 17201, 0x0, SYSCALL

count = 1, fd = 3

e kernel.syscall_exit: 103158.477582114 (./Trace/kernel_0), 19035, 19035, ./perf, , 17201, 0x0,

USER_MODE _ret = 1

H. Waly and B. Ktari niversité Laval) State of the Art 48 /

© Malicious Traces

@ Discussion

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 49 / 79

Discussion

© Scenario based on multiple events.
@ Conditional Transitions.

© Variables.

@ Grouping.

© Counting.

O Real-time constraints.

@ Non-Occurrence of events.

@ Synthetic events.

Name 1 2 3 4 5 6 7 8
chroot jail v v v v - - - -
Abusing setuid | v vV 0V VvV - - - -
Race condition | vv v v Vv - - v -
SYN Flood v v v v v v - Y
File descriptors | vv v v v - - - -
Deadlock v v v v - - - -
Error Handling | v v v v - - - -
Inefficient /O | v v v Vv v - -

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 50 / 79

© Scenario Description Languages
@ Scientific Model
@ Scenario Description Languages
@ Discussion

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 51 /79

© Scenario Description Languages
@ Scientific Model

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 52 /79

Scientific Model

@ Wide range of systems.

@ Group the languages used in these systems into the following groups:
© Imperatives Languages.
@ Automata-based Languages.
© Temporal Logic.
© Expert Systems.
@ Policy-based Languages.
@ Other languages.

@ Study each language using a scientific model.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 53 /79

Scientific Model

@ Language Description (capabilities, syntax, ...).
@ Example of property.

e Language Analysis:

Expressiveness.
Unambiguous.
Online/Offline.
Simplicity.

Trace dependency.

Open Source availability.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 54 / 79

© Scenario Description Languages

@ Scenario Description Languages

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 55 / 79

Scenario Description Languages

Automating the detection of faulty behavior needs a simple and
unambiguous language.

The languages are divided into the following categories:
© Imperatives Languages (RUSSEL, BRO, DTrace, and SystemTap).

@ Automata-based Languages (STATL, State Machine Compiler, Ragel,
BSML, and IDIOT).

© Temporal Logic (ADele, Chronicle, and LogWeaver).
© Expert Systems (P-Best, and Lambda).

@ Policy-based Languages (Blare, and BlueBox).

@ Other languages (snort, and SECnology).

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 56 / 79

Imperative Languages: RUSSEL (2006)

@ RUle-baSed Sequence Evaluation Language.
@ Used in audit trace analysis as part of ASAX IDS.

[A. Mounji, N. Habral, B. Le Charlier and I. Mathieu.
“Asax: Software architecture and rule-based language for universal audit trail
analysis”.
Computer Security — ESORICS 92, 648/1992:435-450, April 2006.

rule Failed_login (maxtimes, duration : integer)
begin
if evt=’login’ and res=’failure’ and is_unsecure (terminal)
-> Trigger off for next Count_rulel (maxtimes-1, timestp+duration)
fi;

Trigger off for next Failed_login (maxtimes, duration)

end;

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 57 / 79

RUSSEL Rule

rule Count_rulel (countdown, expiration : integer)
if evt=’login’ and res=’failure’
and is_unsecure(terminal) and timesto < expiration
-> if countdown > 1
-> Trigger off for next Count_rulel(countdown-1, expiration);
countdown=1
-> SendMessage("too much failed login’s")
fi;
timestp >= expiration
-> Skip;
true

-> Trigger off for next Count_rulel(countdown, expiration);

H. Waly and B. Ktari

58 /

niversité Laval) State of the Art

RUSSEL Discussion

@ Expressiveness: Provide more flexibility to describe attacks than
declarative languages (one rule-based languages).

@ Unambiguous.
@ Online/Offline: Online.
@ Simplicity: Difficult to describe complex attacks.

@ Trace dependency: Dependent on Network attacks.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 59 / 79

Automata-Based Languages: STATL (2002)

Language used in STAT for IDS.
STATL is translated into C++.

Contains a lot of extensions like: NetStat, WinStat, LinStat, ... (Contains a
set of pre-defined scenarios)

Visualization tool could be used.

Provide Timers.

@ S.T. Eckmann, G. Vigna, and R.A. Kemmerer.

“STATL: An Attack Language for State-based Intrusion Detection”.
Journal of Computer Security, vol. 10, no. 1/2, pp. 71-104, 2002

1-[Transition Guard]
4-Transition Action

5-Finishing Transition

3-Entering

Transition 2-[State Assertion]

6-Entry Transition

7-Action
8-Leaving Transition

Figure: General Finite State Machine Architecure

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 60 / 79

Automata-Based Languages: STATL (2002)

@ Three types of transitions:

© Consuming: Normal transition, system changes it state.

@ Non-Consuming: Create a copy of the system state, and then moves to
next state.

© Unwinding: Delete all states.

1-[Transition Guard]
4-Transition Action

5-Finishing Transition

3-Entering

s 2-[State Assertion]
Transition

6-Entry Transition |

7-Action
8-Leaving Transition

Figure: General Finite State Machine Architecure

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009

Scenario Example - FSM

create file login read hosts

ool

Figure: ftp-write FSM

create_file login read hosts

delete file2

Figure: State transition diagram with unwinding transitions

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 61 /79

Scenario Example

use ustat;
scenario ftp_ write

int user;
int pid;
int inode;

initial state sO {}
transition create _file (sO -> s1) nonconsuming

[WRITE w] : (w.euid != 0) && (w.owner != w.ruid))
{ inode = w.inode;

state s1 {}
transition login (sl -> s2) nonconsuming

[EXEC e] : match_name(e.objname, "login")
{ user = e.ruid; pid = e.pid; }

state s2 {}
transition read rhosts (s2 -> s3) consuming

[READ 1] : (r.pid == pid) && (r.inode == inode)
state s3

{

string username;
userid2name(user, username);
log("remote user %s gained local access", username);

H. Waly and B. Ktari iversité Laval) State of the Art December 10, 2009 62 / 79

Scenario Example - Unwinding transitions

H. Waly and B. Ktari

transition delete_filel (s1 -> s0) unwinding
[DELETE d] : d.inode == inode

zransition delete file2 (s2 -> s0) unwinding
[DELETE d] : d.inode == inode

transition logout (s2 -> s1) unwinding

[EXIT €] : e.pid == pid

State of the Art

December 10, 2009

63 / 79

STATL - Discussion

@ Expressiveness: A flexible way for describing attacks in a form that
could be represented graphically, the conversion of the code to C++
make it more expressive.

@ Unambiguous.
@ Online/Offline: Online.
@ Simplicity: Simple way to describe complex attacks.

@ Trace dependency: Contains different packages for different problems
(WinStat, UStat, NetStat).

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 64 / 79

Temporal Logic: Chronicle

@ Temporal logic that permits the recognition of chronics in a flow of
events.

@ Verified by the online system "Chronicle Recognition System".

@ C. Dousson.
“Suivi d'évolutions et reconnaissance de chroniques”.
Ph.D. dissertation, Universiti£j Paul Sabatier de Toulouse, september 1994.
@ Chronicle operators:

o hold(P;v;(t;t2)): The attribute P holds the value of v, in the interval
tl to t2.

o event(P;(v1;v2);): the attribute P changes from value v1 to v2 in
time t.

o event(P;t): The attribute p occurs at time t.

o noevent(P;(t1;t2)): The value of attribute P has not changed in the
interval (t1,t2)

o occurs((n1;n2);P;(t1;t2)) In the interval (t1,t2), the attribute t
occurs nl to n2 times.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 65 / 79

Chronicle Scenario example

chronicle shellcode_mitigation[?source, ?7target]{

event (alarm[ftp_retr_request,?source, 7target], t1)
event (alarm[shellcode, ?source, 7target] , t2)
noevent (alarm[ftp_transfer_complete,?target,?source], (t1+1,t3-1))

event (alarm[ftp_transfer_complete, 7target,?source], t3)

tl < t2 < t3

when recognized {

emit event(alarm[shellcode_mitigation, 7source, 7target], t2)

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 66 / 79

Chronicle - Discussion

@ Expressiveness: Compact way for describing attacks, Different
functions that enrich the expressivity time-constraints, non-occurence,

@ Unambiguous.
@ Online/Offline: Online.

@ Simplicity: Simple way to describe complex attacks.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 67 / 79

Expert Systems: Lambda

@ Part of exploit systems.

@ Describes the attack from the attacker point of view.
@ Each attack is divided into the following:

e pre-condition.

@ scenario.

e post-condition.

@ F. Cuppens and R. Ortalo.
“Lambda: A language to model a database for detection of attacks’.
Proceedings of the Third International Workshop on Recent Advances in
Intrusion Detection, Springer-Verlag, pp. 197-216, 2000.

@ F. Sadri and R. A. Kowalski.
“Variants of the event calculus”.
International Conference on Logic Programming, pp. 67—-81, 1995.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 68 / 79

Scenario Example

Action touch(Agent,File) Action block(Agent,Printer)

Pre: true Pre: printer(Printer),

Post: file(File), owner(Agent,File) physical _access(Agent, Printer)
Post: blocked(Printer)

Action Ipr-s(Agent,Printer,File) Action remove(Agent,File)

Pre: printer(Printer), file(File), Pre: owner(Agent, File)

authorized(Agent,read, File) Post: not(file(File))
Post: queued(File,Printer)

Action In-s(Agent,Link,File) Action unblock(Agent, Printer)
Pre: not(file(Link)) Pre: printer(Printer), blocked(Printer),
Post: linked(Link,File) physical _access(Agent, Printer)

Post: not(blocked(Printer))
Action print-process(Printer,Link) || Action get-file(Agent,File)

Pre: queued(Link, Printer), Pre: printed(Printer,File),
linked(Link,File), physical _access(Agent, Printer)
not(blocked(Printer)) Post: read _access(Agent, File)

Post: printed(Printer,File),
not(queued(Link, Printer))

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 69 / 79

Discussion

Interesting in the trace analysis

Accumulation, inference and decision making is useful to detect maybe
unkown attacks.

Interesting way of dealing with synthetic events (Knoweldge database).

Simple way of describing attacks (pre, scenario and post conditions).

Describing the attacks from the attacker point of view.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 70 / 79

© Scenario Description Languages

@ Discussion

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 71/ 79

Name

[=)]

~

Snort
SECnology
Blare
BlueBox
RUSSEL
BRO
DTrace
SystemTap
STATL
SMC

Ragel
BSML
IDIOT
ADele
Chronicle
LogWeaver
P-Best

Lambda

SN N N T N N N N N N NN

SN N N N N N N NN

SN N N N N N N NN

AN N N T N N N N N N NIEN

<

AN N N TS SN NEEN

SN N NN

SNEENEENERN

00000 0©00O0CO

Sequence of event.
Non-occurrence of events.
Time constraint.

Number of occurrence of an
event

Context sensitive.

Online analysis.

Simplicity.

Suitable for kernel tracing.
Possibility of inferring new

facts.

@ Conclusion

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 73/ 79

Conclusion

Scenario-based

Unsuitable for detecting unknown malicious behaviors.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 74 / 79

Conclusion

Policy-based

Too restricted and could generate a lot of false alarms.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 74 / 79

Conclusion

Properties

There is no language that covers all the properties studied so far.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 74 / 79

The target is to define a language that is both scenario and policy based:

scenario-based

To prevent not only known attacks but also unknown variations of attacks
or attacks that exploit similar mechanisms.

policy-based

To prevent abnormal behaviors given a set of policy rules rather than
models that specify "normal" behaviors.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 75 / 79

Milestone K1.3

Implement an automated fault pattern detection engine, based on the
selected pattern description language. Describe a number of low level
problems using the selected language.

| A\

Milestone K1.4

Measure the performance of the fault pattern detection engine on large
traces when simultaneously searching for several patterns. Measure the
accuracy of the patterns for detecting the problematic conditions. Adapt
and optimize the algorithms.

Milestone K1.5

Publish the new fault patterns descriptions, description language and fault
pattern detection algorithms developed.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 76 / 79

Relations with other teams

@ Trace Abstraction project: The scenario is based on abstracted
events to be more generic and cover similar attacks.

@ System Health project: The results of the detection could be an
input to the system health to calculate the safety and the performance
of the system.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 77 / 79

Expected Results (for the short term)

@ An Eclipse plug-in editor for the definition of scenarios and policy rules.

@ An Eclipse plug-in engine that automatically detect faults in an
abstracted version of LT Tng traces.

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 78 / 79

Questions?!

H. Waly and B. Ktari (Université Laval) State of the Art December 10, 2009 79 / 79

	Introduction
	Malicious Traces
	Scenario Description Languages
	Conclusion

