Multi Level Trace Events Linking,
Storage and Display

Naser Ezzati Jivan
Michel Dagenais
Department of Computer and Software Engineering

) December 9, 2011
Ecole Polytechnique, Montreal

Motivations

» Tracing systems provides information at several
levels: Operating system, virtual machine, user
space.

* There are several modules that generate higher
level analytical events from the raw trace
events.

« Trace Abstraction , Trace directed modeling,
Automated fault identification

2 Tracing and monitoring distributed multi-core systems

Motivations

* For better understanding the system, users
need to access easily and efficiently to all of
these multi level information.

e Users must be able to navigate from raw
events to the new information generated by

the analysis modules.

3 Tracing and monitoring distributed multi-core systems m

Different levels of detall

« There are many levels in the hierarchy.

« Most analysts start with an overview of
the system before refining their view to b
more detailed.

« The highest level is the most abstract
level of the hierarchy, and can be an
overview of the system

o the lowest level is the most detailed level
(raw events)

4 Tracing and monitoring distributed multi-core systems

1- Pattern matching to create compound events

Constructed by aggregating set of low level events
to single compound event using pattern matching
techniques.

Example: highlighted area can be aggregated to a
“file write” event.

kernel.sched schedule: 245.173141831 (project/kernel 1, 1874, 613, rs:main Q:Reg, , 1, ©x0, MAYBE USER MODE { prev pid = 0, next pid = 1874, prev state = 0 }
mm. page free: 245. 1?3143?61 (project/mm 1), 1874, 613, rs:main Q:Reg, , 1, ©x0, MAYBE USER MODE { “pfn = 1617390, order = 0 }

kernel.syscall exit: 245.173146346 Lplu]PcT#kPrnPl 1), 1874, 613, rs:main Q:Reg, , 1, 0x8, MAYBE USER MODE { ret = 0 }
kernel.syscall _entry: 245.173148681 lpIDJPCTHKPInPl 1), 1874, 613, rs:main Q:Reg, , 1, 6x0, SYSCALL { ip = ©x74a267bf955, syscall id = 202 [syscall 262] }
kernel.syscall exit: 245.173149576 (project/kernel 1), 1874, 613, rs:main Q:Reg, , 1, 0x, MAYBE USER MODE { ret = 6 }
kernel.syscall entry: 245.173165661 (project/kernel 1), 1874, 613, rs:main Q:Reg, , 1, @x8, SYSCALL { ip = 0x7f4a267bfc5d,

syscall id = 1 [syscall 1] }

fs.write: 245.173179378 (project/fs 1), 1874, 613, rs:main Q:Reg, , 1, €x0, SYSCALL { count = 66, fd = 4 }

kernel.syscall exit: 245.173180026 (project/kernel 1), 1874, 613, rs:main Q:Reg, , 1, ©x@, MAYBE USER MODE { ret = 66 }

kernel.syscall entry: 245,173183408 (project/kernel 1), 1874, 613, rs:main Q:Reg, , 1, €x8, SYSCALL { ip = 0x7f4a267bfc5d, syscall id = 1 [syscall 1] }
fs.write: 245173188953 (project/fs 1), 1874, 613, rs:main Q:Reg, , 1, @x0, SYSCALL { count = 66, fd =1 }

kernel.syscall exit: 245.173189260 (project/kernel 1), 1874, 613, rs:main Q:Reg, , 1, ©x@, MAYBE USER MODE { ret = 66 }

kernel.syscall entry: 245.173207223 (project/kernel 1), 1874, 613, rs:main Q:Reg, , 1, 6x8, SYSCALL { ip = 0x7f4a267bfc5d, syscall id = 1 [syscall 1] }

fs.write: 245.173210895 (project/fs 1), 1874, 613, rs:main Q:Reg, , 1, €x0, SYSCALL { count =73, fd = 4 }

kernel.syscall exit: 245.173211185 (project/kernel 1), 1874, 613, rs:main Q:Reg, , 1, 0x@8, MAYBE USER MODE { ret = 73 }

kernel.syscall entry: 245,173213390 (project/kernel 1), 1874, 613, rs:main Q:Reg, , 1, @x8, SYSCALL { ip = 0x7f4a267bfc5d, syscall id = 1 [syscall 1] }
fs.write: 245.173216020 (project/fs 1), 1874, 613, rs:main Q:Reg, , 1, Ox0, SYSCALL { count =73, fd =1}

How to create the hierarchy?

e

2- (Generalization

 relates a class to a superclass N
Raw Events Generalized events More Generalized

Socket read Socket read Read

File read File read Read

File readv

File pread64

Tracing and monitoring distributed multi-core systems %

How to create the hierarchy?

3- Filtering

e Filter some base events and
generates a subset of events on IMPORTANT
a higher level. T

 Filtering is based on predefined %]

priority and weights.

Tracing and monitoring distributed multi-core systems

How to create the hierarchy?

4- Make statistics as an overview of the system

- Statistics of important system metrics

- CPU usage
- Number of connections

- Number of open files
- 1/O throughput
- Number of faults

SU- ...

25- ...

245,226,500,000 245,227,000,000 245,227,500,000
time

Linking different levels of the hierarchy

A

D

PO oD

y Multi-Dimensional N
Level O Link Data Structure \

A

Level 1

Level 2(raw events)

o) Tracing and monitoring distributed multi-core systems

Indexing

« (Good storage purposes,
 Efficient enough to work with large data set

D

A

K

E L

i M

10 Tracing and monitoring distributed multi-core systems

Data Structures

« R-tree is a special index that designed for doing range queries.

« Organize spatial objects into k-dimensional rectangles. Each node in the
tree corresponds to smallest k-dimensional rectangle that encloses child
nodes.

o If an object is spatially contained in several nodes, it is only stored in one
node.

« Problem is that to find some object you might have to go through several
rectangles or whole database.

« R-trees are most commonly used in spatial systems where each entry is
a rectangle.

« R+-trees: try not to overlap the rectangles, the overlapping objects
appear in all of the rectangles.

11 Tracing and monitoring distributed multi-core systems

Implementation

We have implemented the data structure as an
extension to the “state system”

« Two approaches:

- Storing all the abstract events
 Once we created and stored the abstract events, we can use them without
reading the trace again.

« We model the abstract events as states

- When there is a “connection” abstract event for a process P1: The state
of the attribute P1 is “connected”

- Storing the intermediate states (needed by pattern matching) and
enough information for regenerating the abstract events

« We store enough information about the intermediate states so that we can
re-generate abstract events for any given time range of the trace

12 Tracing and monitoring distributed multi-core systems

Implementation

. The data structure supports
multi levels of states:

- A process open a file (state of the process at this
level is “opening a file”)

- At a higher level it can be member of a “sequential
file read/write” event. Thus state of the process
will be “sequentially reading a file” in the higher
level

. States keep track of addresses
of their children and also their
direct parent

Size

Level

Type
Operands

Pointer to S1S2 ... Sn
sub statel

Pointer to
sub state2

SiSi+1 ... Si+m

Pointer to
sub state n

More pointers

(if needed) I I I

State (abstract event)

Level2]

Levell

13 Tracing and monitoring distributec

Demo

Rﬁug;;ge | |1|::mj liﬁ 248,000,001 < | (= |}[+) -|00.000
gerrtraces.sh 1884 43
leeckl 2019 43

leed 2021 43
leed 2022 43
/home/naser/fworkspace/flightbox-prim: 2023 44
—| Jusrflocal/bin/socket 2024 45
File Ops 45

Process Ops 47
Net Ops 47
= Jusr/bin/lttctl 2025 48

Process Ops 49
Files 49
Networks

L evels

« System-call level (open, read, send, ...)
 Classification of system calls

« Operation level (TCP connection, HTTP
request, DNS request, a file download, a port
scan, sequentially file read and ...)

« Operation type: file operation, network
operation, ...

o Statistical overview
15 Tracing and monitoring distributed multi-core systems

. We are using “timeline” to visualize the states (abstract events).
. States are shown by two colors:
« One color for the operation (read, write, send, open, fork, ...)
« One color for its type (file operation, net operation, ...)
« Visual Operations:

« Focusing

_ Showing relevant information of a specific event
_ Two dimensional focusing:

.Select a region in time
. Select a process (resource) or group of them
. ZOOMing

_ Showing more details(Google Map) and enlarging the content.

« Users can navigate from a higher level view to a lower level and vice
versa

Example

Will run the DEMO program!

17

Tracing and monitoring distributed multi-core systems

Conclusion and Future Work

« We have defined the different levels of
information that can be created to better
understanding a trace

 We have discussed the data structure we have
used for prototyping the demo.

* We will continue to implement and optimize the
aforementioned data structure.

18 Tracing and monitoring distributed multi-core systems m

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Demo
	Slide 15
	Visualization
	Slide 17
	Slide 18

