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System Health Monitoring and
Reactive Measures Activation

Continuously monitor the health of a
large system so that system
anomalies (bad behaviors and
attacks) can be promptly detected and
handled appropriately
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System Health Monitoring Components
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~ System Health Monitoring Architecture
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Data Gathering
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Data Gathering (1)

e Characterize network connections features.

« Each TCP/IP connection was described by some authors with up to 41
quantitative and qualitative features that can be used for anomaly detection.

« System Calls
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Data Gathering (2) - Features

Continuous and discrete features of connections (e.g. service type: TCP,
UDP, ICPM)

1 duration 9 urgent 17 num_file_creations 25 serror_rate 33 dst_host_srv_count

2 protocol type 10 hot 18 num_shells 26  srv_serror_rate 34 dst_host_same_srv_rate

3 service 1 num_failed_logins 19 num_access_files 27 rerror_rate 35 dst_host_diff_srv_rate

4 Flag 12 logged _in 20 num_outbound_cmds 28  srv_rerror_rate 36 dst_host_same_src_port_rate
5 src_bytes 13 num_compromised 21 is_host_login 29 same_srv_rate 37 dst_host_srv_diff_host_rate

6 dst_bytes 14 root_shell 22 is_guest_login 30  diff_srv_rate 38 dst_host_serror_rate

7 land 15 su_attempted 23 count 31 srv_diff_host_rate 39 dst_host_srv_serror_rate

8 wrong_fragment 16 num_root 24 srv_count 32 dst_host _count 40 dst_host_rerror_rate

41 dst_host_srv_rerror_rate

41 features of each TCP/IP connection
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Data Gathering (3) - System Calls

« System call trace: open, read, mmap, mmap, open, getrlimit, mmap, close

E Named } [Sendmail} ENetscape}

System Calls
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Detection

Anomaly detection can detect new problems, but it has a higher false
positive rate than intrusion detection systems based on attack signatures.

Most systems concentrate on detecting incorrect network behavior.

An ideal detection component has a 100% problem detection rate along with
a 0% false positive rate.
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Anomaly

« There are some profiles that represent normal behavior of users, hosts, or
networks

 Anomalies are significant deviations from these profiles
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Detection Algorithms (1)

Decision Tree (DT)

Fuzzy

Neural Network

Support Vector Machines (SVM)
Bayesian Network

Hidden Markov Models (HMM)
Nearest neighbor

Clustering
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Detection Algorithms (2) — Decision Tree

§1,52,S3 RSTO
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Detection Algorithms (3) — Fuzzy(1)

IF x= High and
y= Low then
z= Medium

Fuzzification Inference Engine Defuzzification
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Detection Algorithms (4) — Fuzzy(2)

« Continuous and discrete features, different fuzzification methods.

» ltis very difficult to define the membership function for all the continuous features even for an expert, an
automatic approach must be used to create the membership functions for each continuous feature.

1.2
1
0.8
== ow
0.6 == Medium
High
0.4
0.2
0

0 1 2 3 4 5 6
num_failed_logins

Three Level Membership Function

If (dst_host_srv_count is not low or
protocol_type is not tcp) and protocol_type is not
icmp then normal = High

If (dst_host_srv_count is low and flag is not SO
and and protocol_type is not icmp and
dst_host_srv_rerror_rate is not level-4 then

U2R = Medium

If num_failed_logins is High and logged_in is
Low then R2L = Medium

If (dst_host_srv_count is low or is_guest_login is
true) and flag is not REJ and
dst_host_same_srv_rate is not low and duration
is not level-4 then R2L = High

If count is not low or same_srv_rate is low then
DOS = High

fuzzy rule

1.2

1

0.8

0.6
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0

== | ow
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f = {Low , Medium , High }

f={0.2,0.8, 0.6}

R2L = (0.2 * 0.05+0.8* 0.45+0.6*0.66)/(0.2+0.8+0.6)=0.47
88 % in Medium Group

13 % in Less Group

Defuzzification
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Detection Algorithms (5) — Neural Network

- Each input into the neuron has its own associated weight, determined by training.
« The weights in most neural nets can be negative or positive.

- f1 =duration * w1+ protocol_type * w2 + ...

Input Hidden Output

duration

protocol_Type

service

flag

src_bytes

dst_host_srv_rerror_rate
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Detection Algorithms (6) — Support Vector
Machines

Which of the linear separators is optimal?

SVM uses a high dimension space to find a hyper-plane to perform binary classification

SVM can handle the problem of linear inseparability

For example, 41 features can be used to train SVM model

24

Tracing and monitoring distributed multi-core systems




[1]
(2]

[3]

[4]

[5]

[6]

References

http://en.wikipedia.org/wiki/Support_vector_machine

Rung-Ching Chen, Kai-Fan Cheng, Ying-Hao Chen, Chia-Fen Hsieh, Using Rough Set and Support Vector Machine
for Network Intrusion Detection System, First Asian Conference on Intelligent Information and Database Systems, pp.
465-470, 2009

Khan L., Awad M. and Thuraisingham B., A new intrusion detection system using support vector machines and
hierarchical clustering, ISSN:1066-8888, pp. 507-521, 2007

LiuJ.C.,Lin C. H,, YuJ. L., Lai W. S. and Ho C. H., Anomaly Detection Using LibSVM Training Tools,
International Journal of Security and Its Applications, Vol.2 , No.4, ISBN: 978-0-7695-3126-7, pp. 166-177, 2008

Zhang R., Zhang S., Muthuraman S. and Jiang J., One class support vector machine for anomaly detection in the

communication network performance data, Proceedings of the 5th conference on Applied electromagnetics, wireless
and optical communications, Spain, ISBN:1790-5117, pp. 31-37, 2007

Abraham A, Jain R., Thomas J. and Han S. Y., D-SCIDS: Distributed soft computing intrusion detection system,
Journal of Network and Computer Applications, pp. 81-98, 2007

25

Tracing and monitoring distributed multi-core systems



http://en.wikipedia.org/wiki/Support_vector_machine

Detection Algorithms (7) — Bayesian Network

Bayesian networks are
directed acyclic graphs
whose nodes
represent random
variables in the
Bayesian sense

dst_host_same dst_host_same 2 = num_shells
d _srv_rate _src_port_rate e e
Each node is
aSSOCiated With a num_com @ dst_host_sr same_sryv dst_host_ dst_host_srv_
probablllty funCtlon that promised v_count _rate count diff_host_rate

takes as input a

particular set of values @ i o
' pted ess_ files r_ “rate
for the node's parent

variables and gives the

probability of the A . o e o
variable represented host_rate 0 agment und_cmds b
by the node
P(b0Ja0) = 0.31 @
P(b0|a1) = 0.69 '.

P(a0) = 0.42 P(b1|a0) = 0.24 -
P(a1) = 0.58 P(bi|al) = 0.76 b
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Detection Algorithms (8) — Hidden Markov
Models (1)

Consider the following sequence of system .
calls to define normal behavior:

« Open, read, mmap, mmap, open,
getrlimit, mmap, close

After sliding the window across the complete
sequence, we produce this expanded database

call position 1 | position 2 | position 3
Sliding window = K and suppose k=4 open read, mmap mmap,
getrlimit close
For the first window, we see read mmap mmap open
(open,read,mmap,mmap) then the following mmap mmap, open, getrlimit,
database is produced: open, getrlimit | mmap
close
getrlimit | mmap close
close
call | position 1 ‘ position 2 ‘ position 3
open | read mmap mmap
read mmap mmap
mmap | mmap
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Detection Algorithms (9) — HMM (2)

Suppose we have a new trace of calls, differing at one location from the normal sequence (open replaces
mmap as the fourth call in the sequence):

e open, read, mmap, open, open, getrlimit, mmap, close
This trace would generate 4 mismatches, because:

« open is not followed by open at position 1

« open is not followed by open at position 3,

« read is not followed by open at position 2,

Mismatches are the only observable that we use to distinguish normal from abnormal

call position 1 | position 2 | position 3

open read, mmap mmap,
getrlimit close

read mmap mmap open

mmap mmap, open, getrlimit,
open, getrlimit | mmap
close

getrlimit | mmap close

close

29

Tracing and monitoring distributed multi-core systems




Detection Algorithms (10) — HMM (3)

Capture system call trace: State = {51, s2, s3, 54}

..., Open, read,lmmap] mmap, open, getrlimit) close,|...

Extract sequences: 0.5
n-grams mmap, mmap, open, getrlimit
mmap, open, getrlimit, close S1 0.5
mmap
Data Modelling

l

open, getrlimit
mmap, *, getrlimit
mmap, *, *, getrlimit
getrlimit, close

open, *, close
mmap, *, * close

lookahead pairs HMM for two sliding window
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Detection Algorithms (11) —
Nearest neighbor

Normal data instances occur in dense neighborhoods, while anomalies occur far from their closest neighbors

Distance (or similarity) between two data instances can be computed in different ways
» Euclidean metric

« Mahalanobis metric

We must define a threshold that can be calculated in training phase

All test data points that have distances to their nearest neighbors greater than the threshold are detected as
anomaly
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Detection Algorithms (12) — Clustering

» Different concepts for clustering:
 Normal data instances belong to a cluster in the data, while anomalies do not belong to any cluster

 Normal data instances lie close to their closest cluster centroid,while anomalies are far away from their
closest cluster centroid

 Normal data instances belong to large and dense clusters, while anomalies either belong to small or
sparse clusters
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Prediction
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Prediction Structure

The prediction component will attempt to make a prediction of a possible
future problem based on the current distributed problem pattern

The prediction component processes the problem data information from the
various detection components

/ _ . \ Prediction compenent
Distributed Detection
Main algorithms \

Ve N\
Detection 1 0
S 4
Ve N\
, Risk
Detection 2 >@ Assessment }
& )
° ( J
Y [}
° ([ J
[ Detection n } @ /
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Prediction Algorithms

Hidden Markov Model (HMM)

Bayesian Network
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E Detection 1

Prediction Algorithms-HMM

/ Hidden Markov Model

Observation = {No suspicious activity
, Probing , Successful Problem}

|
)

N G

\ State = {Normal,Attemp,Progress,Successful}

N

4

Risk
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Online Risk Assessment
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Risk Assessment

Risk assessment is the process of identifying, characterizing, and
understanding risk.

The result of risk assessment, risk index, provides decision support for the
prevention component.

Risk index in three aspects:
= The probability that an abnormal activity detected is a true problem

= The probability that a problem can successfully compromise its target
= The severity caused by a problem

42
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Risk Assessment Methods

Fuzzy

Dempster-Shafer (D-S) Evidence Theory
Hidden Markov Model (HMM)

Bayes framework

Rule based (similar to SQL)

Genetic Programming
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Risk Assessment Methods- Fuzzy (1)

* Fuzzy model uses the general structure of risk assessment

Problem Frequency
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Probability for threat Success
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Risk Assessment Methods- Fuzzy (2
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Risk Assessment Methods-

D-S Evidence Theory

D-S evidence theory is a frequently used tool in solving complex problems with uncertainties

D-S evidence concepts:
Some evidence is not reliable (the anomaly is wrong sometimes and right sometimes)

Some evidence is incorrect

Some evidence is uncertain

Some evidence is contradictory

Some evidence is incomplete

I
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Online risk assessment model
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Prevention

48

Tracing and monitoring distributed multi-core systems




Prevention Methods

« Association Based Systems

 Whenever a specified problem occurs, a response will be
triggered.

« Expert Based Systems

« Decision making but no learning (i.e. cannot increase their
artificial intelligence level during their lifetime).

« Adaptive Based Systems

» Decision making and learning.
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Prevention Structure

Plan 1 (Notify Administrator)
Plan 2 (Backup)
Plan 3 (Block IP)

Plan n (Shutdown)
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Prevention - Plan

Change All Passwords
Format the Hard Disk

IP Blocking
Dropping Packets

Killing Process °
Reboot *
Shutdown

TCP Reset

Delete files

Run Virus Check

Turn off the services

Applying Patch
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Conclusion

» Layered, incremental approach from raw
monitoring data to reactive measures.

« Build upon automated problem identification and
trace abstraction.

« Use both problem descriptions and deviations
from normal operation.

* Implement a framework to experiment with
several of the best methods proposed in the
literature.
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