
Automated fault identification

Hashem WALY

Supervisor: Dr. Béchir KTARI

FACULTÉ DES SCIENCES ET DE GÉNIE
Université Laval, Quebec, Canada.

September 17, 2009
Montréal, Canada

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 1 / 60

mailto:hashem-mohamed.waly.1@ift.ulaval.ca

Agenda

1 Introduction

2 Malicious Traces
Security Patterns
Testing Programs
System Performance
Discussion

3 Scenario Description Languages
Domain Specific Languages

Declarative DSL
Imperative DSL

Automata-Based Languages
Temporal Logic
Expert Systems
Discussion

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 2 / 60

Plan

1 Introduction

2 Malicious Traces
Security Patterns
Testing Programs
System Performance
Discussion

3 Scenario Description Languages
Domain Specific Languages

Declarative DSL
Imperative DSL

Automata-Based Languages
Temporal Logic
Expert Systems
Discussion

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 3 / 60

Updated Project Schedule

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 4 / 60

Milestones

K1.1
Build a list of low level problems and collect a database of good
traces and of traces illustrating these problems (excessive
swapping, saturated disk subsystem...).

K1.2
Study the various languages that may be suitable to describe
different fault patterns. Compare their expressiveness, potential
for performance, and applicability to detect a wide range of
problems.

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 5 / 60

Objectives

Automating the detection of
malicious behaviors,
performance degradation, and
software bugs.
In the context of multi-core
CPUs, and high level of
interconnectivity between
networked systems.

Kernel
Traced

with LTTng

~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 6 / 60

Objectives

Automating the detection of
malicious behaviors,
performance degradation, and
software bugs.
In the context of multi-core
CPUs, and high level of
interconnectivity between
networked systems.

Kernel
Traced

with LTTng

~ ~ ~
~ ~ ~
~ ~ ~

~ ~ ~
~ ~ ~
~ ~ ~

~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 6 / 60

Objectives

Automating the detection of
malicious behaviors,
performance degradation, and
software bugs.
In the context of multi-core
CPUs, and high level of
interconnectivity between
networked systems.

Kernel
Traced

with LTTng

~ ~ ~
~ ~ ~
~ ~ ~

~ ~ ~
~ ~ ~
~ ~ ~

Analysis
Engine

~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 6 / 60

Objectives

Automating the detection of
malicious behaviors,
performance degradation, and
software bugs.
In the context of multi-core
CPUs, and high level of
interconnectivity between
networked systems.

Kernel
Traced

with LTTng

~ ~ ~
~ ~ ~
~ ~ ~

~ ~ ~
~ ~ ~
~ ~ ~

Analysis
Engine

~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~

Alarms
Alerts (Red, Green, …)

System State

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 6 / 60

Objectives

Automating the detection of
malicious behaviors,
performance degradation, and
software bugs.
In the context of multi-core
CPUs, and high level of
interconnectivity between
networked systems.

Kernel
Traced

with LTTng

~ ~ ~
~ ~ ~
~ ~ ~

~ ~ ~
~ ~ ~
~ ~ ~

Analysis
Engine

~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~

Alarms
Alerts (Red, Green, …)

System State

Online Analysis

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 6 / 60

Objectives

Automating the detection of
malicious behaviors,
performance degradation, and
software bugs.
In the context of multi-core
CPUs, and high level of
interconnectivity between
networked systems.

Kernel
Traced

with LTTng

~ ~ ~
~ ~ ~
~ ~ ~

~ ~ ~
~ ~ ~
~ ~ ~

Analysis
Engine

~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~

Alarms
Alerts (Red, Green, …)

System State

Online Analysis

System Health

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 6 / 60

Scientific Model

Problem Identification (the
category of the attack, severity,
FSM, ...).
Code snapshot (Create or
re-use code).
LTTng Trace analysis (refine the
trace and study relevant events).
Language properties.
Good Traces.
Analysis.

pgflastimage

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 7 / 60

Scientific Model

Problem Identification (the
category of the attack, severity,
FSM, ...).
Code snapshot (Create or
re-use code).
LTTng Trace analysis (refine the
trace and study relevant events).
Language properties.
Good Traces.
Analysis.

pgflastimage

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 7 / 60

Scientific Model

Problem Identification (the
category of the attack, severity,
FSM, ...).
Code snapshot (Create or
re-use code).
LTTng Trace analysis (refine the
trace and study relevant events).
Language properties.
Good Traces.
Analysis.

pgflastimage

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 7 / 60

Scientific Model

Problem Identification (the
category of the attack, severity,
FSM, ...).
Code snapshot (Create or
re-use code).
LTTng Trace analysis (refine the
trace and study relevant events).
Language properties.
Good Traces.
Analysis.

1 2

Program
Code

Problem identification

Code Generation

LTTng Trace Analysis

Language properties

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 7 / 60

Scientific Model

Problem Identification (the
category of the attack, severity,
FSM, ...).
Code snapshot (Create or
re-use code).
LTTng Trace analysis (refine the
trace and study relevant events).
Language properties.
Good Traces.
Analysis.

1 2

Program
Code

Problem identification

Code Generation

LTTng Trace Analysis

Language properties

Good Traces

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 7 / 60

Scientific Model

Problem Identification (the
category of the attack, severity,
FSM, ...).
Code snapshot (Create or
re-use code).
LTTng Trace analysis (refine the
trace and study relevant events).
Language properties.
Good Traces.
Analysis.

1 2

Program
Code

Problem identification

Code Generation

LTTng Trace Analysis

Language properties

Good Traces

Compared
to original

Trace

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 7 / 60

Scientific Model

Problem Identification (the
category of the attack, severity,
FSM, ...).
Code snapshot (Create or
re-use code).
LTTng Trace analysis (refine the
trace and study relevant events).
Language properties.
Good Traces.
Analysis.

1 2

Program
Code

Problem identification

Code Generation

LTTng Trace Analysis

Language properties

Good Traces

Discussion (alternate attacks,
Solutions, ...)

Compared
to original

Trace

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 7 / 60

Plan

1 Introduction

2 Malicious Traces
Security Patterns
Testing Programs
System Performance
Discussion

3 Scenario Description Languages
Domain Specific Languages

Declarative DSL
Imperative DSL

Automata-Based Languages
Temporal Logic
Expert Systems
Discussion

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 8 / 60

Malicious Traces

Security
File permissions and attributes.

Escaping a chroot Jail.
Race conditions on files.

Privilege Escalation.
Abusing setuid function.

Buffer Overflow.
Networks.

SYN Flood attack.
Viruses.

Linux RST.b virus.

Testing Programs
Using File Descriptors

System Performance
Inefficient I/O

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 9 / 60

Malicious Traces

Security
File permissions and attributes.

Escaping a chroot Jail.
Race conditions on files.

Privilege Escalation.
Abusing setuid function.

Buffer Overflow.
Networks.

SYN Flood attack.
Viruses.

Linux RST.b virus.

Testing Programs
Using File Descriptors

System Performance
Inefficient I/O

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 9 / 60

Plan

1 Introduction

2 Malicious Traces
Security Patterns
Testing Programs
System Performance
Discussion

3 Scenario Description Languages
Domain Specific Languages

Declarative DSL
Imperative DSL

Automata-Based Languages
Temporal Logic
Expert Systems
Discussion

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 10 / 60

File Permissions and attributes

Why securing file permissions is important?
In Linux, everything is a file!
First line of defense against attacks.

Linux file attributes: Users fall into:
1 Owner of the file.
2 Same group.
3 Others.

Each has the read, write and execute capabilities.
user@sigma:ls -l
-rw-r--r-- 1 user group 653 2009-07-23 12:11 file.txt

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 11 / 60

File Permissions and attributes attacks

Escaping a chroot jail
attacker could escape from a chroot jail, and corrupt real file
systems.

Race conditions on File Systems
a privileged process could be altered to access and damage
file systems.

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 12 / 60

Escaping a chroot jail

Chrooting:
It’s a combination of two words: change and root.
Changes the root directory of logged-on users or
applications.

Problem:
After call to chroot, chdir("/") should be called.
Any open-like system calls, immediately after chroot
could open real system files.

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 13 / 60

FSM & Code

S0start S1 S2

chroot();
{save pid()};

[same pid()]
chdir();

[same pid()]
open();

chroot("/home/hamow1/myjail");
open("../../../etc/passwd",O RDONLY);
user@sigma:sudo chroot /home/hamow1/myjail

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 14 / 60

LTTng Trace Details

To convert the trace into text format, use textDump module:

user@sigma:lttv -m textDump -o ascii file.txt -t trace directory

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 15 / 60

LTTng Trace Details

1 kernel.syscall entry: 261268.787261067 (./kernel 0),

30844, 30844, ./chroot violation, , 30843, 0x0,

SYSCALL ip = 0xb800e430, syscall id = 61

[sys chroot+0x0/0xa0]
2 kernel.syscall exit: 261268.787275718 (./kernel 0),

30844, 30844, ./chroot violation, , 30843, 0x0,

USER MODE ret = 0
3 kernel.syscall entry: 261268.787742811 (./kernel 0),

30844, 30844, ./chroot violation, , 30843, 0x0,

SYSCALL ip =0xb800e430, syscall id = 5

[sys open+0x0/0x40]
4 fs.open: 261268.787755723 (./fs 0), 30844, 30844,

./chroot violation, , 30843, 0x0, SYSCALL

fd = 3, filename = "../../../../etc/passwd"
5 kernel.syscall exit: 261268.787757648 (./kernel 0),

30844, 30844, ./chroot violation, , 30843, 0x0,

USER MODE ret = 3

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 16 / 60

Language properties

S0start S1 S2

chroot();
{save pid()};

[same pid()]
chdir();

[same pid()]
open();

1 Scenario based on multiple events.
2 Conditional transition.
3 Variables.
4 Grouping

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 17 / 60

Discussion

S0start S1 S2

chroot();
{save pid()};

[same pid()]
chdir();

[same pid()]
open();

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 18 / 60

Discussion

False Alarms
If the user opened a normal file, or a file inside the jail.

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 18 / 60

Discussion

S0start S1 S2

chroot();
{save pid()};

[same pid()]
chdir();

[same pid()]
open outside();

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 18 / 60

Alternate Attack

Attacker needs to have a root permission in the chrooted
environment.
Create a new folder within the chrooted environment.
Change directory into that folder, and sets the folder as the
new chroot directory.
Perform chdir(../) to escape from a chroot jail, and
attacker is now able to navigate the true file system and
even has a root access.

S0start S1 S2 S3 S4

mkdir();
{save pid()

save name()};

[same pid()
same name()]

rmdir();

[same pid()
same name()]

chdir();

[same pid()
same name()]

chdir();

[same pid()
same name()]

chroot(); [same pid()]
chdir(../);

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 19 / 60

Good Traces

The behavior of a normal user doing the same functionality.
Not always an easy task.
Normally it’s not a single instance.

user@sigma:sudo chroot /home/hamow1/myjail

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 20 / 60

Good Traces

1 kernel.syscall entry: 14881.772973238 (./kernel 0), 10409,

10409, /usr/sbin/chroot, , 8345, 0x0, SYSCALL ip =

0xb7f99430, syscall id = 61 [sys chroot+0x0/0xa0]

2 kernel.syscall exit: 14881.773144700 (./kernel 0), 10409,

10409, /usr/sbin/chroot, , 8345, 0x0, USER MODE ret = 0

3 kernel.syscall entry: 14881.773175093 (./kernel 0), 10409,

10409, /usr/sbin/chroot, , 8345, 0x0, SYSCALL ip =

0xb7f99430, syscall id = 12 [sys chdir+0x0/0x80]

4 kernel.syscall exit: 14881.773178827 (./kernel 0), 10409,

10409, /usr/sbin/chroot, , 8345, 0x0, USER MODE ret = 0

5 kernel.syscall entry: 14881.7731785057 (./kernel 0), 10409,

10409, /usr/sbin/chroot, , 8345, 0x0, SYSCALL ip =

0xb7f99430, syscall id = 213 [sys setuid+0x0/0xe0]

6 kernel.syscall exit: 14881.14690258819 (./kernel 0), 10409,

10409, /usr/sbin/chroot, , 8345, 0x0, USER MODE ret = 0

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 21 / 60

Good Traces

1 kernel.syscall entry: 14881.772973238 (./kernel 0), 10409,

10409, /usr/sbin/chroot, , 8345, 0x0, SYSCALL ip =

0xb7f99430, syscall id = 61 [sys chroot+0x0/0xa0]

2 kernel.syscall exit: 14881.773144700 (./kernel 0), 10409,

10409, /usr/sbin/chroot, , 8345, 0x0, USER MODE ret = 0

3 kernel.syscall entry: 14881.773175093 (./kernel 0), 10409,

10409, /usr/sbin/chroot, , 8345, 0x0, SYSCALL ip =

0xb7f99430, syscall id = 12 [sys chdir+0x0/0x80]

4 kernel.syscall exit: 14881.773178827 (./kernel 0), 10409,

10409, /usr/sbin/chroot, , 8345, 0x0, USER MODE ret = 0

5 kernel.syscall entry: 14881.7731785057 (./kernel 0), 10409,

10409, /usr/sbin/chroot, , 8345, 0x0, SYSCALL ip =

0xb7f99430, syscall id = 213 [sys setuid+0x0/0xe0]

6 kernel.syscall exit: 14881.14690258819 (./kernel 0), 10409,

10409, /usr/sbin/chroot, , 8345, 0x0, USER MODE ret = 0

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 21 / 60

Plan

1 Introduction

2 Malicious Traces
Security Patterns
Testing Programs
System Performance
Discussion

3 Scenario Description Languages
Domain Specific Languages

Declarative DSL
Imperative DSL

Automata-Based Languages
Temporal Logic
Expert Systems
Discussion

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 22 / 60

Plan

1 Introduction

2 Malicious Traces
Security Patterns
Testing Programs
System Performance
Discussion

3 Scenario Description Languages
Domain Specific Languages

Declarative DSL
Imperative DSL

Automata-Based Languages
Temporal Logic
Expert Systems
Discussion

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 23 / 60

Using File Descriptors

Detection of software bugs, inefficient code.
Cause performance degradation.
Very difficult to detect in multi-core, and distributed
systems.

Everything in a Linux is a file
A set of common errors:

Accessing a file descriptor that has been closed.
Accessing a file descriptor that has not been opened.
Not closing a file at the end of operation.
Opening a file and not using it in any read/write operations.

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 24 / 60

Using File Descriptors

Detection of software bugs, inefficient code.
Cause performance degradation.
Very difficult to detect in multi-core, and distributed
systems.

Everything in a Linux is a file
A set of common errors:

Accessing a file descriptor that has been closed.
Accessing a file descriptor that has not been opened.
Not closing a file at the end of operation.
Opening a file and not using it in any read/write operations.

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 24 / 60

FSM & Code

S0start S1 S2

close(fd);
{save pid();};

exit();
[same pid()]

open(fd);
[same pid();
same fd();]

fd = open("/home/hashem/test2.txt", O RDONLY);
close(fd);
read(fd,buff,length);

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 25 / 60

LTTng Trace Details

1 kernel.syscall entry: 6632.973601582 (./kernel 0), 7103, 7103, ./test, , 6369,

0x0, USER MODE ip = 0xb7f68430, syscall id = 5 [sys open+0x0/0x40]

2 fs.open: 6632.973606875 (./fs 0), 7103, 7103, ./test, , 6369, 0x0, SYSCALL

fd=3, filename = "/home/hashem/test2.txt"

3 kernel.syscall exit: 6632.973607677 (./kernel 0), 7103, 7103, ./test, , 6369,

0x0, USER MODE ret = 3

4 kernel.syscall entry: 6632.973609431 (./kernel 0), 7103, 7103, ./test, , 6369,

0x0, USER MODE ip = 0xb7f68430, syscall id = 6 [sys close+0x0/0xf0]

5 fs.close: 6632.973610248 (./fs 0), 7103, 7103, ./test, , 6369, 0x0, SYSCALL

fd = 3

6 kernel.syscall exit: 6632.973612598 (./kernel 0), 7103, 7103, ./test, , 6369,

0x0, USER MODE ret = 0

7 kernel.syscall entry: 6632.973613891 (./kernel 0), 7103, 7103, ./test, , 6369,

0x0, USER MODE ip = 0xb7f68430, syscall id = 3 [sys read+0x0/0xb0]

8 kernel.syscall exit: 6632.973614247 (./kernel 0), 7103, 7103, ./test, , 6369,

0x0, USER MODE ret = -9

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 26 / 60

Language Properties

S0start S1 S2

close(fd);
{save pid();};

exit();
[same pid()]

open(fd);
[same pid();
same fd();]

1 Scenario based on multiple events.
2 Conditional Transitions.
3 Variables.
4 Grouping.

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 27 / 60

Good Traces

if(access(filename, W OK) == 0){
if(open(filename, O WRONLY) == -1){
perror(filename);
return(0);

}
//Manipulate with the fd
write(fd, "hello \n",6);
close(fd);

}

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 28 / 60

Good Traces

kernel.syscall entry: 141730.167331518 (./kernel 1), 6227, 6227, ./write, ,

5870, 0x0, SYSCALL ip = 0xb7f2c430, syscall id = 33 [sys access+0x0/0x30]

kernel.syscall exit: 141730.167276820 (./kernel 1), 6227, 6227, ./write, ,

5870, 0x0, USER MODE ret = 0

kernel.syscall entry: 141730.167331518 (./kernel 1), 6227, 6227, ./write, ,

5870, 0x0, SYSCALL ip = 0xb7f2c430, syscall id = 5 [sys open+0x0/0x40]

fs.open: 141730.167336200 (./fs 1), 6227, 6227, ./write, , 5870, 0x0, SYSCALL

fd=3, filename = "/tmp/x"

kernel.syscall exit: 141730.167336977 (./kernel 1), 6227, 6227, ./write, ,

5870, 0x0, USER MODE ret = 3

kernel.syscall entry: 141730.167338546 (./kernel 1), 6227, 6227, ./write, ,

5870, 0x0, SYSCALL ip = 0xb7f2c430, syscall id = 4 [sys write+0x0/0x3b0]

fs.write: 141730.167360780 (./fs 1), 6227, 6227, ./write, , 5870, 0x0, SYSCALL

count = 6, fd = 3

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 28 / 60

Good Traces

kernel.syscall exit: 141730.167361125 (./kernel 1), 6227, 6227, ./write, ,

5870, 0x0, USER MODE ret = 6

kernel.syscall entry: 141730.167363096 (./kernel 1), 6227, 6227, ./write, ,

5870, 0x0, SYSCALL ip = 0xb7f2c430, syscall id = 6 [sys close+0x0/0x40]

fs.close: 141730.167363898 (./fs 1), 6227, 6227, ./write, , 5870, 0x0, SYSCALL

fd=3

kernel.syscall exit: 141730.167366575 (./kernel 1), 6227, 6227, ./write, ,

5870, 0x0, USER MODE ret = 0

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 28 / 60

Plan

1 Introduction

2 Malicious Traces
Security Patterns
Testing Programs
System Performance
Discussion

3 Scenario Description Languages
Domain Specific Languages

Declarative DSL
Imperative DSL

Automata-Based Languages
Temporal Logic
Expert Systems
Discussion

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 29 / 60

System Performance

Inefficient I/O
Frequent writing of small chuncks of data.
Writing latency (timeout) to disk (maybe due to disk
saturation, ...).
Reading twice the same data.
Reading the data that has been just written to disk.

Real-time applications constraints.

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 30 / 60

System Performance

Inefficient I/O
Frequent writing of small chuncks of data.
Writing latency (timeout) to disk (maybe due to disk
saturation, ...).
Reading twice the same data.
Reading the data that has been just written to disk.

Real-time applications constraints.

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 30 / 60

Inefficient I/O

S0start S1 S2

write small(fd);
{save pid();

incr counter();};

close(fd);
[same pid()]

counter > limit
[same pid();
same fd();]

fd = open("/home/hashem/test2.txt", O RDONLY);
for(i=0;i<100;i++){
write(fd,"a",1);

}

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 31 / 60

LTTng Trace Details

1 kernel.syscall entry: 103158.477573944 (./Trace/kernel 0), 19035, 19035,

./perf, , 17201, 0x0, USER MODE ip = 0xb7f6d430, syscall id = 5

[sys open+0x0/0x40]

2 fs.open: 103158.47758115 (./Trace/fs 0), 19035, 19035, ./perf, , 17201, 0x0,

SYSCALL fd = 3, filename = "/home/hashem/test2.txt"

3 kernel.syscall exit: 103158.477582114 (./Trace/kernel 0), 19035, 19035, ./perf,

, 17201, 0x0, USER MODE ret = 3

4 kernel.syscall entry: 103158.477582836 (./Trace/kernel 0), 19035, 19035,

./perf, , 17201, 0x0, USER MODE ip = 0xb7f6d430, syscall id = 4

[sys write+0x0/0xb0]

5 fs.write: 103158.477637465 (./Trace/fs 0), 19035, 19035, ./perf, , 17201, 0x0,

SYSCALL count = 1, fd = 3

6 kernel.syscall exit: 103158.477582114 (./Trace/kernel 0), 19035, 19035, ./perf,

, 17201, 0x0, USER MODE ret = 1

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 32 / 60

Plan

1 Introduction

2 Malicious Traces
Security Patterns
Testing Programs
System Performance
Discussion

3 Scenario Description Languages
Domain Specific Languages

Declarative DSL
Imperative DSL

Automata-Based Languages
Temporal Logic
Expert Systems
Discussion

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 33 / 60

Discussion

1 Scenario based on multiple events.
2 Conditional Transitions.
3 Variables.
4 Grouping.
5 Counting.
6 Real-time constraints.
7 Non-Occurrence of events.
8 Synthetic events.

Name 1 2 3 4 5 6 7 8
chroot jail X X X X - - - -
Abusing setuid X X X X - - - -
Race condition X X X X - - X -
SYN Flood X X X X X X - X
File descriptors X X X X - - - -
Writing small data X X X X X - - -

Table: Language properties
Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 34 / 60

Plan

1 Introduction

2 Malicious Traces
Security Patterns
Testing Programs
System Performance
Discussion

3 Scenario Description Languages
Domain Specific Languages

Declarative DSL
Imperative DSL

Automata-Based Languages
Temporal Logic
Expert Systems
Discussion

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 35 / 60

Scenario Description Language

Automating the detection of faulty behavior needs a simple and
unambiguous language.
The languages are divided into the following categories:

1 Domain Specific Languages.
Declarative DSL.

Rule-Based Languages (snort, and SECnology).
Policy-based Languages (Blare, and BlueBox).

Imperative DSL (RUSSEL, BRO, DTrace, and SystemTap).
2 Automata-Based Languages (STATL, State Machine

Compiler, Ragel, BSML, and IDIOT).
3 Temporal Logic Languages (ADele, Chronicle, and

LogWeaver).
4 Expert systems (P-Best, and Lambda).

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 36 / 60

Plan

1 Introduction

2 Malicious Traces
Security Patterns
Testing Programs
System Performance
Discussion

3 Scenario Description Languages
Domain Specific Languages

Declarative DSL
Imperative DSL

Automata-Based Languages
Temporal Logic
Expert Systems
Discussion

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 37 / 60

Domain Specific Languages (DSL)

DSL are dedicated to solve a particular problem or implement a
well-defined domain task.

Declarative DSL
Describes what is to be done, the logic of computation.

Imperative DSL
Describes How something could be done, the control flow of
the program.

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 38 / 60

Snort 2009

Free, open-source, and Well-known system used
Network-Based Intrusion Detection System (NIDS).
Could be used as packet-sniffer, packet logger and NIDS.
Network packets are checked agains the occurence of
specific values in fields.
If found a specific action should be taken.
Snort is based on one packet (event) evaluation.

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 39 / 60

Discussion

Using Declarative DSL in Kernel Tracing.
Writing patterns at high level of abstratction (no awareness
about implementation).
High speed detection (one event evaluation).
Cannot represent patterns based on multiple events.

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 40 / 60

RUSSEL 2006

RUle-baSed Sequence Evaluation Language.
Used in audit trace analysis as part of ASAX IDS.

rule Failed login (maxtimes , duration : integer)

#This rule detects a first failed login and triggers off

#an accordig rule with an expiration time

begin

if evt=‘login’ and res=‘failure’ and is unsecure (terminal)

-->Trigger off for next Count rule1 (maxtimes-1, timestp+duration)

fi;

Trigger off for next Failed login (maxtimes , duration)

end;

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 41 / 60

RUSSEL Rule

rule Count rule1 (countdown , expiration : integer)

#This rule counts the subsequent failed logins,

#it remains active until its expiration time or until the countdown becomes 0

if evt=‘login’ and res=‘failure’

and is unsecure(terminal) and timesto < expiration

-->if countdown > 1

-->Trigger off for next Count rule1(countdown-1, expiration);

countdown=1

-->SendMessage("too much failed login’s")

fi;

timestp >= expiration

Skip;

--> Skip;

true

-->Trigger off for next Count rule1(countdown, expiration);

fi;

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 42 / 60

Discussion

Provides a mechanism for relating different events.
Intrusion detection domain related.
Only one active rule is available at a time (Rule triggering
mechanism).

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 43 / 60

Plan

1 Introduction

2 Malicious Traces
Security Patterns
Testing Programs
System Performance
Discussion

3 Scenario Description Languages
Domain Specific Languages

Declarative DSL
Imperative DSL

Automata-Based Languages
Temporal Logic
Expert Systems
Discussion

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 44 / 60

STATL 2002

Language used in STAT for IDS.
STATL is translated into C++.
Contains a lot of extensions like: NetStat, WinStat, LinStat,
... (Contains a set of pre-defined scenarios)
Visualization tool could be used.
provide Timers.

Figure: General Finite State Machine Architecure

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 45 / 60

STATL 2002

Three types of transitions:
1 Consuming: Normal transition, system changes it state.
2 Non-Consuming: Create a copy of the system state, and

then moves to next state.
3 Unwinding: Delete all states.

Figure: General Finite State Machine Architecure

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 45 / 60

Scenario Example

use netstat ;
scenario halfopentcp(int timeout)
{

IPAddress victim_addr ;
Port victim_port ;
IPAddress attacker_addr ;
Port attacker_port ;
timer t0 ;
initial state s0 {}
transition SYN (s0 -> s1) nonconsuming
{

[IP ip [TCP tcp]] :
(tcp.tcp_header.�ags & TH_SYN) && !(tcp.tcp_header.�ags & TH_ACK)
{

victim_addr=ip.header.dst ;
victim_port=tcp.header.dst ;
attacker_addr=ip.header.src ;
attacker_port=tcp.header.src ;

}
}
state s1
{

{ timer_start(t0, timeout) ; }
}
transition ACK (s1 -> s0) unwinding
{

[IP ip [TCP tcp]] :
(ip.header.dst==victim_addr) && (tcp.header.dst==victim_port) &&
(ip.header.src==attacker_addr) && (tcp.header.src==attacker_port) &&
!(tcp.header.�ags & TH_SYN) && (tcp.header.�ags & TH_ACK)

}
transition RST (s1 -> s0) unwinding
{

[IP ip [TCP tcp]] :
(ip.header.src==victim_addr) && (tcp.header.src==victim_port) &&
(ip.header.dst==attacker_addr) && (tcp.header.dst==attacker_port) &&
(tcp.header.�ags & TH_RST)

}
transition Timed_out (s1 -> s2) consuming
{

timer t0 ;
}
state s2
{

{
HALFOPENTCP e ;
e = new HALFOPENTCP(attacker_addr, attacker_port, victim_addr,
victim_port, start) ;
enqueue_event(e, HALFOPENTCP, start) ;

}
}

}

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 46 / 60

Discussion

Provide a simple, efficient and expressive way for
describing a wide-variety of attacks.
Very applicable to Trace Analysis.
Conversion of code to C++ make it more powerful.
Describe efficiently complex attacks.

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 47 / 60

Plan

1 Introduction

2 Malicious Traces
Security Patterns
Testing Programs
System Performance
Discussion

3 Scenario Description Languages
Domain Specific Languages

Declarative DSL
Imperative DSL

Automata-Based Languages
Temporal Logic
Expert Systems
Discussion

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 48 / 60

Chronicle

Temporal logic that permits the recognition of chronics in a
flow of events.
Verified by the online system ”Chronicle Recognition
System”.
Chronicle operators:

hold(P;v;(t;t2)): The attribute P holds the value of v, in the
interval t1 to t2.
event(P;(v1;v2);): the attribute P changes from value v1 to
v2 in time t.
event(P;t): The attribute p occurs at time t.
noevent(P;(t1;t2)): The value of attribute P has not
changed in the interval (t1,t2)
occurs((n1;n2);P;(t1;t2)) In the interval (t1,t2), the attribute
t occurs n1 to n2 times.

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 49 / 60

Chronicle Scenario example

chronicle portscan[source,target]{
event(alarm[sid 1, source, target], t1)

occurs(1,+∞, alarm[sid 2,source,target], (t1+1,t2))

noevent(1,+∞, alarm[sid 2,source,target], (t1,t2))

event(alarm[sid 3,source,target], (t2+1))

t1 < t2

when recognized {
emit event(alarm[portscan, source, target], t2)

}
}

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 50 / 60

Discussion

Valid for the trace analysis.
The time-constraints between events is important in a lot of
attacks.
The non-occurence of events.
The context of events (hold).
The Counting (occurs).
Un-wise use of memory could cause performance
degradation and even memory explosion.
Generates a lot of alarms of the same problem (multiple
instances).

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 51 / 60

Plan

1 Introduction

2 Malicious Traces
Security Patterns
Testing Programs
System Performance
Discussion

3 Scenario Description Languages
Domain Specific Languages

Declarative DSL
Imperative DSL

Automata-Based Languages
Temporal Logic
Expert Systems
Discussion

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 52 / 60

Lambda

Part of exploit systems.
Describes the attack from the attacker point of view.
Each attack is divided into the following:

pre-condition.
scenario.
post-condition.

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 53 / 60

Scenario example

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 54 / 60

Discussion

Interesting in the trace analysis
Accumulation, inference and decision making is useful to
detect maybe unkown attacks.
Interesting way of dealing with synthetic events
(Knoweldge database).
Simple way of describing attacks (pre, scenario and post
conditions).
Describing the attacks from the attacker point of view.

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 55 / 60

Plan

1 Introduction

2 Malicious Traces
Security Patterns
Testing Programs
System Performance
Discussion

3 Scenario Description Languages
Domain Specific Languages

Declarative DSL
Imperative DSL

Automata-Based Languages
Temporal Logic
Expert Systems
Discussion

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 56 / 60

Discussion

Studied so far 18 different languages.
Sequence of event.

Non-occurrence of events.

Time constraint.

Number of occurrence of an event

Context sensitive.

Online analysis.

Simplicity.

Suitable for kernel tracing.

Possibility of inferring new facts.

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 57 / 60

Name 1 2 3 4 5 6 7 8 9

Snort - - - X X X - - -

SECnology - - - - - Y Y - -

Blare X X X X Y - X - -

BlueBox X X X X X X - X -

RUSSEL X - X X - - - - -

BRO X X X X X - - - -

DTrace X X X X X - - - -

SystemTap X X X X X - - - -

STATL X X X X - - X X -

SMC X X X X X - - - -

Ragel X X X X X - - - -

BSML X X X X X - - - -

IDIOT X X X X X - - - -

ADele X X X X X - - - -

Chronicle X X X X X X - X -

LogWeaver X X X X X - - - -

P-Best X X X X X - - - -

Lambda X X X - X - X - X

1 Sequence of event.
2 Non-occurrence of events.
3 Time constraint.
4 Number of occurrence of an

event
5 Context sensitive.
6 Online analysis.
7 Simplicity.
8 Suitable for kernel tracing.

9 Possibility of inferring new
facts.

Future Work

April
2009

May Jun Jul Aug Sep Oct Nov Dec

Project Start Linux Symposium

K1.1-Study and collect traces of systems with low-level problems (4 months)

Jul 13-17, 2009May 11, 2009

Eclipse and LTTng Training
May 21, 2009

K1.2-Study Fault Pattern Description languages (3 months)

Progress Meeting
Sep 17, 2009

State of the Art MeetingProject Kickoff
April 9, 2009

Training (LTTng, and Linux) 1.5
months

10 Dec 2010

•State of the art
Document
•Low level Traces
Document

Dec
2009

Jan Feb Mar Apr May Jun Jan
2011

Jul Aug
2010

K1.4-Performance evaluation of the low level fault detection (4 months)

K1.3- Implementation of the fault Pattern Identification Engine (5 months)

Progress Meeting
May, 2010

Progress Meeting
Jan, 2011

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 59 / 60

Thank You

Tracing and Monitoring Distributed Multi-core Systems Progress Report Meeting 60 / 60

	Introduction
	Malicious Traces
	Security Patterns
	Testing Programs
	System Performance
	Discussion

	Scenario Description Languages
	Domain Specific Languages
	Automata-Based Languages
	Temporal Logic
	Expert Systems
	Discussion

