
State System and History
for Trace Viewers

Alexandre Montplaisir
Michel Dagenais

December 9th, 2011
École Polytechnique de Montréal

2/21State System and History for Trace Viewers

Contents

● Definitions

● State System overview

● History Tree

● Partial history

● Concept
● Performance results

● Conclusion

3/21State System and History for Trace Viewers

Definitions

● Event
✔ Punctual record of an action that happened in the

traced system, at a particular time. It has no
duration.

● State (or state interval)
✔ Record that has a start time and end time, hence a

duration. We can describe each state with a
state value.

4/21State System and History for Trace Viewers

Definitions (continued)

● State change
✔ We can specify how events modify our model of the

state. To do this, we assign state changes to certain
types of events.

5/21State System and History for Trace Viewers

Definitions (continued)

● Attribute
✔ Smallest unit of our model

that can be in a particular
state at a given time.

✔ Can be referred to by its path
in the attribute tree, or by its
unique integer identifier
(quark).

<hostname>
 _ CPUs
 | _ CPU0
 | | _ Current_thread
 | | _ IRQ_stack
 | |
 | _ CPU1
 | ...
 |
 _ Threads
 _ PID1
 | _ PPID
 | _ TGID
 | _ Status
 | _ Executable_name
 | _ Exec_mode_stack
 |
 _ PID2
 ...

6/21State System and History for Trace Viewers

Definitions (continued)

● Current State
✔ The current state is the complete state of the

(traced) system, as it was at a given time in the
trace.

✔ It is an array of state values, one for each attribute
in the model (the index in the array corresponds to
the quark).

● The role of the State System is to restore
“current states”, for any given point in the trace.

7/21State System and History for Trace Viewers

The Complete State System

8/21State System and History for Trace Viewers

The Complete State System

● When building the state history the first time,
we read through all the events from the trace.

● The Event handler is where we assign state
changes to events. Those state changes are
then sent to the Transient State.

● The Transient State represents the Current
State, at the point where the reading descriptor
is in the trace file. It is used to generate the
state intervals.

9/21State System and History for Trace Viewers

The Complete State System
Event handler

● We can describe state changes with the
following methods:

modify(timestamp, state_value, attribute)

remove(ts, attribute)

push(ts, value, attribute)

pop(ts, attribute)

increment(ts, attribute)

10/21State System and History for Trace Viewers

The Complete State System
Event handler (example)

case LTT_EVENT_SCHED_SCHEDULE:
 /* Read information from the event payload */
 nextPid = (Long) event.getContent().getField(0).getValue();
 prevPid = (Long) event.getContent().getField(1).getValue();
 stateOut = (Long) event.getContent().getField(2).getValue();

 /* Set the status of the new scheduled process */
 ss.modifyAttribute(ts,
 LTTV_STATE_RUN,
 ["Threads", nextPid.toString(), "Status"]);

 /* Set the status of the process that got scheduled out */
 ss.modifyAttribute(ts,
 stateOut.intValue(),
 ["Threads", prevPid.toString(), "Status"]);

 /* Set the current scheduled process on the relevant CPU */
 ss.modifyAttribute(ts,
 nextPid.intValue(),
 ["CPUs", event.getCPU().toString(), "Current_thread"]);
 break;
...
}

11/21State System and History for Trace Viewers

The History Tree

● Data structure for intervals, optimized for disk
storage.

● Intervals have to be inserted in ascending order
of their end times (this is the case with intervals
generated by the state system).

● Only one branch of the tree has to be explored
for a stabbing query, which gives theoretical
O(log n) scalability.

12/21State System and History for Trace Viewers

The History Tree
Example for a query at

t = 300

13/21State System and History for Trace Viewers

Partial History

● Complete state histories could be very large (~2x the
size of the original trace if we included statistics).

● What if we only store the complete state at checkpoints,
then use the trace to regenerate the state at arbitrary
times?

14/21State System and History for Trace Viewers

15/21State System and History for Trace Viewers

16/21State System and History for Trace Viewers

17/21State System and History for Trace Viewers

Partial History

18/21State System and History for Trace Viewers

Partial History

19/21State System and History for Trace Viewers

Partial History

● Compared to a complete history, a partial one:
● Takes MUCH less space on disk

(about a thousand times less!)
● Query times increase, but stay well within the same

order of magnitude (roughly doubles with a
granularity of 100 000 events).

● We need the original trace to be available.
● We lose the ability to run punctual queries

efficiently.

20/21State System and History for Trace Viewers

Conclusion

● I had many more things to show you!
● Performance comparisons with generic R-Trees

and a PostgreSQL database.
● Hybrid storage
● Claudette nodes
● …

● For more details you can read my thesis, which
should (hopefully) be available in the coming
months.

21/21State System and History for Trace Viewers

Questions?

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

