State History System

Alexandre Montplaisir
Michel Dagenais

) May 5", 2011
Ecole Polytechnique, Montréal

Ccontents

Summary

* Checkpoints vs. State History
e History Tree
State History System library

Converting trace events to state changes
Performance results
Conclusion

Update on the State History System

2/19

Summary

» Trace viewers need to be able to re-create the
complete state the machine was in, at any
given point in a trace.

o State information includes:
* Running processes
e Open file descriptors
« State of CPUs, block devices, ...
* etc.

Update on the State History System 3/19

Summary
The checkpoint method

/ ‘ State system

* |nstead we wanted a system that:

* IS mOre generic
» stores the data on disk (better scalability)

Update on the State History System 4/19

Summary
History Tree

e Generic Interval tree

== * Optimized for disk

/ /\ e Best If Intervals are

Inserted in ascending

/\1 1/\{ ‘[\r‘ order of end-times

https.//projectwiki.dorsal.polymtl.ca/images/1/17/AMG_StateHistory 29062010.pdf

Update on the State History System 5/19

State History System library

e State System

* Maintains the Current
State History System lib.
State 1

History Tree
(file on disk)

* Optionally generates
state intervals for the — |
History Tree.

e Can restore the current
state for any time
position.

Update on the State History System 6/19

State History System library
Attribute Tree

« Attribute <hostname>
: : ~_ CPU®
Atomic unit of state (scalar) o W urrent threac
_ TRQ stack

e The tree nodes are added

|
|

|

| _ CPUl
| s
|

_

as we Insert state values.
. Threads
e Each attribute can be \ PIDI
_ PPID
accessed by: \~ TGID
_Status

_ Executable name
_Exec _mode stack

|
|
|
« Relative or absolute path |
("Threads”, "1", "Status") !
e String or pre-compiled ID for
path components

Update on the State History System

7/19

State History System library
The API

* Building the History

modify(timestamp, value, attribute)
remove(ts, attribute)

push(ts, value, attribute)

pop(ts, attribute)

Increment(ts, attribute)

Update on the State History System 8/19

State History System library
The API

e Queries

 When there is no History (streaming, ...)
getCurrentStateValue(attribute)

» Updating the whole Current State
loadStateAtTime(timestamp)

getStateValue(attribute)

» Single values, without updating C.S.
getSingleStateValue(timestamp, attribute)

Update on the State History System 9/19

Converting trace events
to state changes

* Next step: add an Event Handler, in which we
define state changes for given event types.

Update on the State History System 10/19

Converting trace events
to state changes

 Event Handler prototype for
LTTng kernel traces:

switch (event.getType()) {

case LTT EVENT SYSCALL ENTRY:

ss.pushAttribute(ts,
LTTV STATE SYSCALL,
["Threads", eventPID.toString(), "Exec mode stack"]);

break;

case LTT EVENT SYSCALL EXIT:

ss.popAttribute(ts,
["Threads", eventPID.toString(), "Exec mode stack"]);

break;

Update on the State History System 11/19

Converting trace events
to state changes

case LTT EVENT SCHED SCHEDULE:
/* Read information from the event payload */
nextPid (Long) event.getContent().getField(0).getValue();
prevPid (Long) event.getContent().getField(1l).getValue();
stateOut = (Long) event.getContent().getField(2).getValue();

/* Set the status of the new scheduled process */
ss.modifyAttribute(ts,

LTTV _STATE RUN,

["Threads", nextPid.toString(), "Status"]);

/* Set the status of the process that got scheduled out */
ss.modifyAttribute(ts,

stateOut.intValue(),

["Threads", prevPid.toString(), "Status"]);

/* Set the current scheduled process on the relevant CPU */
ss.modifyAttribute(ts,

nextPid.intValue(),

["CPUs", event.getCPU().toString(), "Current thread"]);
break;

Update on the State History System 12/19

Converting trace events

to state changes

Part of TMF
State History System lib.
1
Event handler
("state changes")
History Tree
(file on disk)
liblttvtraceread
(C library)
(trace file)
[
Update on the State History System 13/19

Performance results

Creation time (s)

2000

1500

1000

State History System performance (as of a couple months ago)

~ 30 mins
o ~22 mins

500

___* ~Omins

I I I T
4000 6000 8000 10000 12000
Size of the trace (MB)

—#—— Current state + History
——B—— Current state only
——@&— Just reading the trace

Update on the State History System

14/19

Performance results

* Recent optimizations:

Avoid re-walking the Attribute Tree whenever
possible (hashing strings, etc.)

Keep handles to the Attribute Tree nodes across
events

Have the processing done in a thread separate
from those accessing the disk

Read traces directly from Java (bypass JNI)

Update on the State History System 15/19

Performance results

State History System lib.

Event handler State System

Intervals

("state changes") I
% V.5. Events I
L
|
WSTF I
Trace Reader
I
I
—

History Tree
(file on disk)

Update on the State History System

16/19

Performance results

Creation time (s)

Comparison with LTTV (VSTF)
2000

1500

1000

—&—— Current state + History

——M— Current state only

——@— Just reading the trace
] LTTV Current State only

!
IR
=
=}
=2
"4)

/;~8_5mir

I I I I I
0 2000 4000 6000 8000 10000 12000
Size of the trace (MB)

Update on the State History System 17/19

Future work

* Further performance analysis

 Measure the time decomposition for each operation

 Compare alternative tree topology and parameters
for the History Tree on disk (e.g. R-Trees)

* Revise and complement the API
* Propose and adapt for upstream TMF

Update on the State History System 18/19

Questions?

Thank you!

Update on the State History System 19/19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

