
State History System

Alexandre Montplaisir
Michel Dagenais

May 5th, 2011
École Polytechnique, Montréal

2/19Update on the State History System

Contents

● Summary

● Checkpoints vs. State History
● History Tree

● State History System library

● Converting trace events to state changes

● Performance results

● Conclusion

3/19Update on the State History System

Summary

● Trace viewers need to be able to re-create the
complete state the machine was in, at any
given point in a trace.

● State information includes:
● Running processes
● Open file descriptors
● State of CPUs, block devices, ...
● etc.

4/19Update on the State History System

Summary
The checkpoint method

● Instead we wanted a system that:
● is more generic
● stores the data on disk (better scalability)

5/19Update on the State History System

Summary
History Tree

● Generic interval tree
● Optimized for disk
● Best if intervals are

inserted in ascending
order of end-times

https://projectwiki.dorsal.polymtl.ca/images/1/17/AMG_StateHistory_29062010.pdf

6/19Update on the State History System

State History System library

● State System
● Maintains the Current

state
● Optionally generates

state intervals for the
History Tree.

● Can restore the current
state for any time
position.

7/19Update on the State History System

State History System library
Attribute Tree

● Attribute
Atomic unit of state (scalar)

● The tree nodes are added
as we insert state values.

● Each attribute can be
accessed by:
● Relative or absolute path

("Threads", "1", "Status")
● String or pre-compiled ID for

path components

<hostname>
 _ CPUs
 | _ CPU0
 | | _ Current_thread
 | | _ IRQ_stack
 | |
 | _ CPU1
 | ...
 |
 _ Threads
 _ PID1
 | _ PPID
 | _ TGID
 | _ Status
 | _ Executable_name
 | _ Exec_mode_stack
 |
 _ PID2
 ...

8/19Update on the State History System

State History System library
The API

● Building the History

modify(timestamp, value, attribute)

remove(ts, attribute)

push(ts, value, attribute)

pop(ts, attribute)

increment(ts, attribute)

9/19Update on the State History System

State History System library
The API

● Queries
● When there is no History (streaming, ...)

getCurrentStateValue(attribute)

● Updating the whole Current State
loadStateAtTime(timestamp)

getStateValue(attribute)

● Single values, without updating C.S.
getSingleStateValue(timestamp, attribute)

10/19Update on the State History System

Converting trace events
to state changes

● Next step: add an Event Handler, in which we
define state changes for given event types.

11/19Update on the State History System

Converting trace events
to state changes

● Event Handler prototype for
LTTng kernel traces:

switch (event.getType()) {

case LTT_EVENT_SYSCALL_ENTRY:
ss.pushAttribute(ts,
 LTTV_STATE_SYSCALL,
 ["Threads", eventPID.toString(), "Exec_mode_stack"]);
break;

case LTT_EVENT_SYSCALL_EXIT:
ss.popAttribute(ts,
 ["Threads", eventPID.toString(), "Exec_mode_stack"]);
break;

12/19Update on the State History System

Converting trace events
to state changes

case LTT_EVENT_SCHED_SCHEDULE:
 /* Read information from the event payload */
 nextPid = (Long) event.getContent().getField(0).getValue();
 prevPid = (Long) event.getContent().getField(1).getValue();
 stateOut = (Long) event.getContent().getField(2).getValue();

 /* Set the status of the new scheduled process */
 ss.modifyAttribute(ts,
 LTTV_STATE_RUN,
 ["Threads", nextPid.toString(), "Status"]);

 /* Set the status of the process that got scheduled out */
 ss.modifyAttribute(ts,
 stateOut.intValue(),
 ["Threads", prevPid.toString(), "Status"]);

 /* Set the current scheduled process on the relevant CPU */
 ss.modifyAttribute(ts,
 nextPid.intValue(),
 ["CPUs", event.getCPU().toString(), "Current_thread"]);
 break;
...
}

13/19Update on the State History System

Converting trace events
to state changes

14/19Update on the State History System

Performance results

~ 30 mins

~22 mins

~9 mins

15/19Update on the State History System

Performance results

● Recent optimizations:
● Avoid re-walking the Attribute Tree whenever

possible (hashing strings, etc.)
● Keep handles to the Attribute Tree nodes across

events
● Have the processing done in a thread separate

from those accessing the disk
● Read traces directly from Java (bypass JNI)

16/19Update on the State History System

Performance results

17/19Update on the State History System

Performance results

~11 mins

~8.5 mins

~5.5 mins

18/19Update on the State History System

Future work

● Further performance analysis
● Measure the time decomposition for each operation
● Compare alternative tree topology and parameters

for the History Tree on disk (e.g. R-Trees)

● Revise and complement the API
● Propose and adapt for upstream TMF

19/19Update on the State History System

Questions?

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

