Tracing and Monitoring Distributed
Multi-Core Systems

The State of the Art of Trace Abstraction
Techniques — Progress Report

Waseem Fadel and Abdelwahab Hamou-Lhadj

{w_fadel, abdelw}@ece.concordia.ca
Department of Electrical and Computer Engineering
Concordia University

Ecole Polytechnique, Montreal, Quebec - Sept17, 2009

Agenda
I

0 Introduction and Motivation
01 Trace Abstraction Techniques
0 Pattern Detection
o Utility Removal
o Data Collection
0 Visualization Techniques

1 Conclusion

1 Future Work

Intfroduction and Motivation
Co |

1 Software engineers need to explore execution traces for a

variety of reasons such as:

o Understand why an unexpected behaviour occurs
o Understanding how a feature is implemented

o Detecting performance bottlenecks

o Studying the impact of making changes to a system
O Run-time monitoring

o Etc.

0 Traces, however, tend to be excessively large and hard to

understand
o Trace abstraction and analysis tools are needed to help software
engineers understand and analyze large traces

Trace Abstraction Techniques
I

1 Obijective:

o0 To facilitate the understanding, exploration, and analysis
of large traces by abstracting out their main content

1 Categories of trace abstraction techniques:
0 Pattern Detection
o Utility Removal
O Data Collection

O Visualization Techniques

Pattern Detection Techniques
N

7 We define a trace pattern as a sequence of events

that occurs repetitively but non-contiguously in
several places in the trace

1 The more patterns in a trace, the less time is
required to understand its content

0 Software engineers do not need to understand the
same sequence twicel

Example of Using Patterns in a Trace
Analysis Tool

Trace Exploration - trace3.ctf - Eclipse Platform

File Edit Mavigate Search Preject Run algarithms Window Help

T

[Efec 2 4 @ e &

=
%.
%

TS

e B |:nfé.='§=' v)-f

-2 wieka
i \classpath

= tracel-2.ctf
= traceZ.ctf
- [2] krace3.ctf
. traced.ctf
traced-5.ctf
traceS.ckf

Propetties

[E3B ~ x

Property

|_ Yalue:

=] Current Node

1. Method Mame weké_.class;ifiers.IB.k.maiﬁ

guruligualbiodatie ¢ WekaitlassHors Bk (e @ Madel (239 occurrences of packagesclassesfmathods: 213 are shown, 26 are hiddsn) I i @B vab x

3. Called By | 0 distinck method(s) G s g i s s B e :

4, Calls | 2 diskinct methodis): wekaa Hidden | Name. | ocourrence | “Source Code Comments -

5. Parent Method | weka, classifiers I8k, main O B weka.care Package —

6. Level : 1 O 3 weka classifiers | package

£::[tace oo, L1 : D (c] wulaka'. cSrE.UtiIs ' Class Class implementing some simple ukility methods, O

8. Source Code Comments starting d = T > =
Sl Trace Statistics I a] weka, core,Fastiector | Class Implements a Fast vector class without synchronize

1. Total Mades | 85406 D G weka. classifiers, Evaluation | Class Class For evaluating machine learning models, <ps=

. Distinct Nodes loog O @ weka.classfiers, Classifier | Class | Abstract classifier, All schemes For nurmeric or nomi

3, Hidden Modes 11781 O @ weka,core FastvectorgFastveckorEnumerat, ., | Class

4. Pattern Detected |25 O @ wieka,classifiers, [Bk$Nsighbortode | Class

3. Trace Source | .trace3-ctf_ | (c] weka,core Inskances | Class Class For handling an ordered set of weighted |nstc

?- sz:l Lilz:ages] ;Indetermlned — a @ wieka, core, Inskance | Class Class for handling an instance. All values {numeric,

8: Tora tine iz " D 2 weka.core, Attribute ~ Class Class for handling an attribute. Once an attrib |
= T _>_|_I Al = I

- K bweka. classifers. 16k, <init> [1]
E| @ weka.classfiers, Evaluation. evaluateMadel [1]

- gpinieka.core Instances, <init= [1]
Tpbweka: core. FastVector, <niks [2]

-~ hweka.core. Fastiector, addElement [3]
- (@ weka.core FastYector,size [1]
Wweka.core. Instances. numattributes [1]
@ weka.core Attribute, <init > [i]

- yweka.core. Fastiector, addElement [3]
i ‘staka.mre.FastVector. <inits= [2]
ks, core. Fastivector, addElement [3]
- @ weka.core Fastvector.size [1]

- @Pweka.core Instances. numattributes [1]
. @ weka.core, Attribute, <init:» [1]

- yweka.core. Fastiector, addElement [3]
- griweka; core; Fastectar. <init> [2]
----ﬂweka,s:nre: FastVector, addElement [3]

Exploration 0

Control Panel | Properties |

Model | Patterns |Sessicn Utiities | Bookmarks

More about Patterns

I
7 Instances of the same pattern do not need to be
identical

o In fact, exact matching never leads to good
abstraction!

O Matching criteria need to be defined to enable
generalization of a trace content

0 ldeally, an extracted trace pattern should
correspond to an abstract concept

0 E.g. a user identifiable computation of some feature
o But reality is far from the ideal!

Pattern Matching Criteria

o1 Pattern matching criteria determine when two
sequences of calls can be considered equivalent

11 Users can select the criteria according to their
knowledge of the system and the complexity of the
trace
O E.g. identical patterns might be useful to novices but less

useful to experts.

7 Many matching criteria have been proposed:

o De Pauw et al., Jerding et al., Richner et al.,, Hamou-
Lhadj and Lethbridge, etc.

Example of Pattern Matching Criteria
I

A

Trace of Routine Calls
oo

Ignore number of

contiguous repetitions

Limit tree depth to 2

Ignore order of calls

\\ n

Remove "m
considered as a

utility

— B

— C

—}D

Review of Key Matching Criteria
T

o1 Ignoring Node Labels: C.obj1.m() and C.obj2.m() can be considered
identical by ignoring the objects’ names.

1 lgnoring Repetition: repetition due to loops and recursions can be
ignored when looking for patterns

/ \ 70N

B BC CC

1 lgnoring Ordering: Order of calls mlght not be important at some levels

of the call tree.
A A
B C C B

Review of Key Matching Criteria (cont.)
I

- Depth-limiting: allows comparing two subtrees up
to a certain depth

o Filtering of Components: ignoring some
components (e.g., utilities) when comparing

sequence of calls A

B/ \C B/ul4\C

LN LN

ul u2 us ud uéb u’7

Review of Key Matching Criteria (cont.)
e |

o Flattening: Ignore the structure of the tree

o Treating the sequence of calls as a set

0 Useful for experts who are not interested in the
detailed call structure

1 Edit Distance: The minimum number of operations
required to transform one sequence into another

Matching Criteria in Practice
I

o Various matching criteria have been used successfully in
various studies:

o Architectural localization (Jerding et al.): Using traces to locate the
right place in the source code where enhancements to the
architecture of the system are needed

o0 Design Recovery
m Extracting component collaboration from traces (Richner et al.)

m Recovery of high-level behavioural diagrams from traces (Hamou-
Lhadj and Lethbridge)

o Fixing defects (Systa et al.)

o Detecting caused of performance bottlenecks (De Pauw et al.)

Limitations of Matching Criteria
e

7 We need to validate the matching criteria and
analyze at which level of the trace they can be
applied usefully

7 We also need to study how they can be combined

0 It is also important to understand how the matching
criteria are used by SW engineers

o Will depend on the knowledge they have of the system
and the complexity of the task at hand

Trace Abstraction Techniques
I

O]
o Utility Removal
O

[

Utility Removal Techniques

1 Hamou-Lhadj and Lethbridge introduced the concept

of trace summarization, which is a process that
o takes a trace as input and returns a summary of its main
content as output

0 Similar in principle to text summarization

1 Key Applications:
o0 Enable top-down analysis of execution traces
0 Recovery of high-level views of the system
o0 Understanding how features are implemented

Selection of the Main Content
T |

1 Based on the removal of implementation details
(including utilities) from traces

1 A study was conducted at QNX to determine what
SW engineers consider as a utility

0 A utility:
O Is something called from several places
O Can be packaged in a non-utility module
O Is used for implementation purposes

1 Not all implementation details are utilities!

Utilityhood Metric

Hamou-Lhadj and Lethbridge, 2006
8

N
Log(
Fanin(r) Fanout(r) + 1
U(r) = X
N Log(N)

1 U(r) has O (not a utility) as its minimum and approaches 1 (most likely to be
a utility) as its maximum

1 Relies on a static call graph to measure fan-in and fan-out of each routine
1 Based on extensive experimental studies

1 An improvement to the metric was proposed by Rohatgi and Hamou-Lhadij
and in which impact analysis is used instead of fan-in analysis

Trace Summarization Process
Tio |

1 Step 1: Set the parameters for the summarization
process (exit condition, etc.)

1 Step 2: Remove implementation details (constructors,
accessing methods)

0 Step 3: Detect and remove utility components

0 Step 4: Output the result

Application of Trace Summarization

o The trace summarization was applied to a trace that
initially contained 97413 routine calls to successfully

extract a summary from this trace that contained
453 calls!

7 The results were validated with the designers of the

target system
0 The summary was confirmed to be an excellent

representation of the main content of the trace

Trace Abstraction Techniques
I

O
O
- Data Collection

[

Data Collection Based Abstraction

Techniques
m_

0 The idea is to reduce trace size by considering only certain
events

o This results in smaller traces that can be further abstracted out

0 Systd et al. proposed an approach that combines static and
dynamic techniques to explore large traces
o Static analysis is used to select only parts of the system that need
to be analyzed using dynamic analysis
® Based on information extracted from the user’s request

o Additional processing of the resulting trace using pattern detection
techniques are applied to extract a high-level view of the trace

Sampling
ol

1 Sampling is another technique used often to reduce the
size of traces during its generation

1 Walker et al. proposed several sampling criteria that can
be used to generate small traces. Examples include:

O the events that appear after a certain timestamp only
O a snapshot of the call stack every x™ event and so on

o Ete.

01 The challenge is to find the adequate sampling
parameters for the understanding of a specific feature

Monotone Subsequence Summarization
-1

o Kuhn and Greevy introduced the Monotone
Subsequence Summarization (Grouping) technique

o Starting from the first event, a group is built by adding
events with the same or with higher nesting level

0 When facing a decrease greater than a threshold
known as gap size, a new group is created

o The result is groups of events identified by the first
event. The events of each group are hidden in a
repository for later exploration

Comparing Abstraction Techniques

11 Cornelissen et al. conducted a comparison of
four abstraction techniques:
O Monotone Subsequence Summarization (Grouping)
o Stack depth limitation
o0 Language-based filtering
o Sampling

Evaluation Metrics
Cae |

o Actual output size: The actual size of the output
dataset after reduction

1 Computation time: The amount of time spent on the
reduction, in seconds

o Information Preservation: Preservation of events per
type. Three types are defined:

o High-level events (no fan-in)
O Low-level events (no fan-out), and

0 Medium-level events (remaining events)

Application
20

0 Each of the four techniques is applied on several
traces

0 The reductions conform to the maximum output size
of the trace

1 Seven thresholds with values between 1000 and

1000000 are applied

1 196 runs are performed

Average Reduction Success Rates
I

100%

93%

Bi0%

Bil%

% +

E0%: H

2% + ZB%

40%:

3% H

2% +

13%

10%

0% 1

SLDERJUENCE slack oepth lang -basag sampling
summarization limiaticn fiterings

Performance

1:":1] L rrrrt | T 1 T T T II LI B R | T T T]
T L '
=
5 1000 | -
E -

n o subge. summarization
E - stack depth limitation -------
= - filtering ———
g S sampling
"
E‘ e - 3
g ;

10 ' I T | | I T T | 1 1 1 | I T A

100000 100D 10000

imiee. output size (e ents)

Performance for the ant-selfbuild trace

1000

Information Preservation

1 Subsequence summarization attains the best results

0 Sampling technique is the least useful technique in
preserving high-level and medium-level events in our
context

0 Stack depth limitation and language-based filtering
techniques preserve low-level events at the cost of
medium-level events.

Summary of the Resulis

Subsequence summarization | Stack depth limitation | Language-based filterings | Sampling
reduction success rate 0 0 - +
performance - 0 0 +
information preservation + 0 -
Where:

+ Good Results
o Acceptable Results
— Bad Results

Trace Abstraction Techniques
I

[
[
[

o Visualization Techniques

Trace Abstraction Techniques Based on
Visualization

N
7 Many tools have been developed to help analysts
in the process of studying execution traces

7 These tools provide a collection of trace abstraction
techniques supported by visualization techniques in
a graphical user interface mode

o They also provide a set of features that visualize
the traces and enable user interactions

o o o o o o o o o o0 o o O

Trace Analysis Tools that Support

Trace Abstraction Techniques

Shimba

ISVis

Ovation

Jinsight

Scene

Program Explorer
Collaboration Browser
AVID

SEAT

OSE

TPTP

LTTNg and LTTV
VET

Systd et al.
Jerding et al.
De Pauw et al.
De Pauw et al.
Koskimies et al.
Lange et al.
Richner et al.
Walker et al.
Hamou-Lhadj et al.
Bennett et al
Eclipse Plugin
Desnoyers et al.

McGavin et al

Presentation Features
I

1 Layout: Defining the standard through which a sequence diagram is laid
out.

o Multiple Linked Views: Providing a number of views that are linked
together.

1 Highlighting: Highlighting a part of the sequence corresponding to user
selection.

o Hiding: Providing the ability to hide some information.
7 Visual Attributes: Using colors and shapes.
o Labels: Labeling classifier, messages, and return values.

o Animation: Supporting animation.

Interaction Features
Tae |

O

Selection: Selecting elements to manipulate, filter, or slice
Component Navigation: Navigating between components and instances

Focusing: Providing techniques such as: collapsing, partitioning, an showing
related messages to selected objects only

Zooming and Scrolling: Enlarging or reducing the size of the components,
and moving up, down, left or right

Querying and Slicing: filtering information, and selecting parts related to
the selected component

Grouping: Grouping objects, messages, repeated patterns

Annotating: Describing grouped components, to store user notes while
exploring the diagram

Example: ISVis
Jerding and Rugaber

View Scenaric Actors Interactions

Actors; I selectad ™ Saelection mode, alngla -

Stream limage Aunnotations ProtocalManager Gul
InbafHiztory Mosaic Kz Presentationfdand Adcesshanager

HTAnC I"J:L"'J:I rataccl

HT Anckics i} LRINN
[]

HT Do Connect

HTFarse el
|]

e chl alaar 160

Ulility

htmiw

Hellist
WindewHisto!

Jinsight (DePauw et al.)

.n 'wuln-' - I

Hiatngenm ol dhjeris Calar by Basa 1ise [Glack=0 i@aid=10010 3405k H[:Eﬁ"

- a '" 7 . o £ : . } :'I: Iy'e
o " =
p . L
..“ : —— e bl B o él B padlieam
| FETREL B R R TL]
— g i i PR ik e
§r T R v
caterirotzmen 00
patalidatgaitman JJ 0

M i
i e ColnarZys rpday il 1 S
IIE“—IH an e AT e III .I. kil I) G
N R T TR T AR =Y
EIE sadirgilm I'lI '|II i , LR .
s iAo it IFRRE AT LR,
At #ﬂl.ll!lmlllﬂﬂ.mﬂlmﬂ

- T paplurpPyriiey
llllﬂ]IIIIIII ||| — iy O T TR

|Ij]]IIIHII-I!lIIIIIIIIIIHIIIHI] :
u

n !IE“ _Lr
10,

L

Execution View
thread interactions, detecting
deadlocks, etc.

Histogram View
Object creation and deletion

Scene

Koskimies et al.
EN

7 Scen (SCENario Enviroment) is a visualization tool
that helps analyzing object oriented systems.

0 It generates scenario diagrams from execution

fraces
Session | I8 F | Grow | e S
Q ExpressionCreator Expression Source
Install =——=pJ
Do -+ |

Evaluate pf

AVID (Walker et al.)
a0 § | ._ et

Conclusion
Ca |

0 We presented and discussed several trace abstraction
techniques and tools that can be used to understand large
traces

o1 Four category of techniques:
o Pattern detection
o Utility removal
O Data collection

1 Visualization features

01 These techniques and tools vary in their design, their usage,
and their effectiveness

Future Work
I

1 We will continue comparing and studying trace abstraction
techniques

0 We will present a complete study on the next scheduled meeting

1 We will start collecting traces generated from multi-core
systems to build a trace bank on which we can test our
techniques

1 We will start developing a new abstraction algorithm that
combines key features from various categories

o The objective is to be able to compare and analyze traces
generated from various runs of a system

Thank You!

Questions and Discussion

References

O

A. Hamou-Lhadj and Timothy Lethbridge. Reasoning about the Concept of Utilities. ECOOP
PPPL, Oslo, Norway, June 14, 2004

A. Hamou-Lhadj and Timothy Lethbridge. Compression Techniques to Simplify the Analysis of
Lar%e Execution Traces. In Proc. of the 10th International Workshop on Program Comprehension
), pages 159-168, Paris, France, 2002

A. Hamou-Lhadj and Timothy Lethbridge. Measuring Various Properties of Execution Traces to
Help Build Better Trace Analysis Tools. In Proc. of the 10th International Conference on
Engineering of Complex Computer Systems, IEEE Computer Society, pages 559-568, 2005

Adrian Kuhn and Orla Greevy. Exploiting the Analogy between Traces and Signal Processing. In
Proc. of IEEE International Confernce on Software Maintainance (ICSM 2006). IEEE Computer
Society Press: Los Alamitos CA, 2006

Andrew Chan, Reid Holmes, Gail C. Murphy and Annie T.T. Ying. Scaling an Object-oriented
System Execution Visualizer throu h Sampllng In Proc. of the 11th IEEE International Workshop
on Program Comprehension (IWP), 2003

A. Hamou-Lhadj and Timoth Lethbrldge Summarizing the Content of Large Traces to Facilitate
the Understanding of the Behaviour of a Software System. In Proc. 14th Int. Conf. on Program
Comprehension (ICPC), pages 181-190. IEEE, 2006

Bas Cornelissen, Leon Moonen, and Andy Zaidman. An Assessment Methodology for Trace
Reduction Techniques

References (cont.)
s [

o Robert J.Walker, Gail C. Murphy, Bjorn Freeman-Benson, DarinWright, Darin Swanson, and
Jeremy Isaak. Vlsuallzmg Dynamic Software System Information through High-level Models. In
Proc. of the Conference on Object-Oriented Programing, Systems, Lan ua% s, and Applications
(Vancouver, British Columbia, Canada; 18-22 October 1998), ACM Sl N, pp. 271-283,
1998. Published as ACM SIGPLAN Notlces 33(10), October 1998

o A. Hamou-Lhadj and Timothy Lethbridge. An Efficient Algorithm for Detecting Patterns in Traces
(|\)/{ Procedure Calls. In Proc. of the 1st International Workshop on Dynamic Analysis (WODA),
ay 2003

o A. Hamou-Lhadj and TimothP/ Lethbridge. Techniques for Reducing the Complexity of Object-
Oriented Execution Traces. In Proc. of VISSOFT, 2003, pp. 35-40

o A. Hamou-Lhadj and Timothy Lethbndge A Survey of Trace Exploration Tools and Techniques.
In Proc. of IBM Centers for Advanced Studies Conferences (CASON 2004). IBM Press:
Indianapolis IN, 2004; 42-55

o A. Hamou-Lhadj. Techniques to Simplify the Analysis of Execution Traces for Program
Comprehension. PhD Thesis, Ottawa-Carleton Institute for Computer Science, School of
Information Technology and Englneerlng, University of Ottawa, Ottawa, Ontario, Canada

o Dean Jerding and Spencer Rugaber. Using Visualization for Architectural Localization and
Extraction. In Proc. of the 4t Working Conference on Reverse Engineering, October 1997, the
Netherlands, IEEE Computer Society, pp. 56-65

References (cont.)
e [

O

A. Hamou-Lhadj. Techniques to Simplify the Analysis of Execution Traces for Program
Comprehension. PhD Thesis, Ottawa-Carleton Institute for Computer Science, School of
Information Technology and Engineering, University of Ottawa, Ottawa, Ontario, Canada

A. Hamou—Lhadg', Edna Braun, Daniel Amyot, and Timothy Lethbridge. Recovering Behavioral
Design Models from Execution Traces. In Proc. of the 91" European Conference on Software
Maintenance and Reengineering (CSMR’05) 2005

Wim De Pauw, David Lorenz, John Vlissides, and MarkWegman. Execution Patterns in Object-
Oriented Visualization. In Proc. of the 4th USENIX Conference on Object-Oriented Technologies
and Systems, pp. 219-234, 1998

Tarja Systa. Understanding the Behavior of Java Programs. In Proc. of the 7t" Working
Conference on Reverse Engineering, Australia, Brisbane, 2000, pp. 214-223

Kai Koskimies and Hanspeter Mdssenbdck. Scene: Using Scenario Diagrams and Active Text for
lllustrating Object-Oriented Programs. In Proc. of ICSE-18, pages 366 375. IEEE, Mar. 1996

Tamar Richner and St’ephane Ducasse. Using Dynamic Information for the lterative Recovery of
Collaborations and Roles. In Proc. of the 18t International Conference on Software Maintenance
(ICSM), pages 34-43, Montréal, QC, 2002

Abdelwahab Hamou-Lhadj, Timothy C. Lethbrridge, Lianjiang Fu. SEAT: A Usable Trace Analysis
Tool. In Proc. of the 13t International Workshop on Program Comprehension (IWPC’05) 2005

References (cont.)
Ce T

o C. Bennett, D. Myers, M. A. Storey, D.M. German, D. Ouellet, M. Salois, and P. Charland. A
Survey and Evaluation of Tool Features for Understanding Reverse Engineered Sequence
Diagrams. Journal of Software Maintenance and Evolution: Research and Practice, March 2008

o Eclipse Documentation — Archived Release. Overview of the Java Profiling Tool.
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.iptp.platform.doc.user/tasks/tesqanac.h
tm

o Eclipse Documentation — Archived Release. Profiling Views.
http://help.eclipse.org/help33/index.jsp?topic=/orqg.eclipse.iptp.platform.doc.user/tasks/tesganac.h
tm

o Eclipse Documentation — Archived Release. Using the Execution Statistics View.
http://help.eclipse.org/help33/index.jsp?topic=/orqg.eclipse.ipip.platform.doc.user/tasks/tesganac.h
tm

o Eclipse Documentation — Archived Release. Method Invocation Tab.
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.tptp.platform.doc.user/tasks/tesqanac.h
tm

o Eclipse Documentation — Archived Release. UML2 Trace Interaction Views.
http://help.eclipse.org/help33/index.jsp?topic=/orqg.eclipse.iptp.platform.doc.user/tasks/tesganac.h
tm

o Mathieu Desnozers and Michel R. Dagenais. Tracing for Hardware, Driver, and Binary Reverse
Engineering in Linux. CodeBreakers Journal Vol. 1, No. 2, 2006

