Efficient dynamic and static
tracepoints in kernel space

Rafik Fahem
Michel Dagenais
Department of Computer and Software Engineering

) December 8, 2011
Ecole Polytechnique, Montreal



Content

« Goals

« GDB tracepoints

« KGTP kernel module

« Work on dynamic tracepoints
e Static tracepoints integration
* Results

« Future work

 Conclusion

2

GDB User Space/Kernel Tracepoints



Goals

* Insert dynamic and static tracepoints in the
kernel

e Associate conditions to tracepoints
« Use dynamic expressions to define conditions

« Evaluate and collect dynamic expressions using
tracepoints

» Collect the static data defined by

TRACE_EVENT using static tracepoints
3 GDB User Space/Kernel Tracepoints



Expressions

» May be complex

« Use the kernel variables
 Arithmetic and logical operators
e C syntax

GDB User Space/Kernel Tracepoints ﬁ




GDB tracepoints
o Initially developed for user-space tracing
e Debug a program without interrupting it

 Locations in the program to which data
collecting probes are associated

* Probes execute dynamic actions
» Tracepoints may be conditional
« 2 types: dynamic and static(UST)

« Work only in remote mode
S GDB User Space/Kernel Tracepoints




Agent Expressions

 Used to define conditions

 Can also be evaluated and collected in the
trace

« Support arithmetic and logical operators
e Use code variables
« Transformed into bytecode by GDB

» Bytecode is interpreted each time the tracepaoint
IS hit by the remote stub

GDB User Space/Kernel Tracepoints



KGTP

« KGTP is a GDB stub that implements
tracepoints in kernel-space

« Only dynamic tracepoints are supported

» Bytecode is interpreted each time the tracepoint
IS hit

» Dynamic tracepoints are based on kprobes

GDB User Space/Kernel Tracepoints M




Work on dynamic tracepoints

* A bytecode to native code converter was
iImplemented in order to increase performance

o Used for conditions and actions
e X86 architecture is supported
e This converter is similar to the GDBServer converter

« An assembly code snippet corresponding to each
opcode

« Code snippets are copied into an executable buffer

GDB User Space/Kernel Tracepoints



Kernel Static Tracepoints

» Connect to kernel static tracepoints defined
using TRACE_EVENT

« KGTP is now able to list, enable and disable
static tracepoints

 Static tracepoint data is collected

 Static tracepoints have the same capabilities
than dynamic tracepoints

GDB User Space/Kernel Tracepoints



Kernel Static Tracepoints

« Static tracepoints detected automatically
 No manual integration is needed(Systemtap)

 Static data simply collected using the “trace
$ sdata” command

« TRACE EVENT was modified in order to collect
the registers at the tracepoint site

« Static tracepoints use the bytecode to native
code converter

10

GDB User Space/Kernel Tracepoints M




Results: dynamic tracepoints

Expression 1035

11

GDB User Space/Kernel Tracepoints



Results: TRACE EVENT data

Data 1216 1252

12

GDB User Space/Kernel Tracepoints



Future Work

« Optimize the bytecode produced by GDB:
unnecessary operations

« Work on the data structures used to store the
trace: ring buffers

 File tracing mode
* Integrate this work in other tracing tools

13

GDB User Space/Kernel Tracepoints



Conclusion

« GDB tracepoints provide a quick solution to
trace in kernel space

« Some improvements are needed

* More details in my thesis

14

GDB User Space/Kernel Tracepoints



Questions?

15

GDB User Space/Kernel Tracepoints




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

