Multi-level, Multi-core Distributed Trace Synchronization

Masoume Jabbarifar
Masoume.jabbarifar@polymtl.ca

Supervisor: Michel Dagenais

DORSAL
11 May 2011
Outline

- Optimization on Offline Synchronization
 - Convex-Hull
 - Architecture
 - Results
- Online Synchronization
 - Interval based Aposteriori Synchronization
 - Sliding Window based Synchronization
 - Incremental Online Synchronization
- Conclusion
- References
Synchronization Algorithm

Convex-Hull

1) Sent and Received sets
 - Guarantee no message inversion
2) Two lines with Max & Min slop
 \[L_{\text{max}}(t_A) = a_{1}\text{\scriptsize{\text{max}}} t_A + b_{0}\text{\scriptsize{\text{min}}} \]
 \[L_{\text{min}}(t_A) = a_{1}\text{\scriptsize{\text{min}}} t_A + b_{0}\text{\scriptsize{\text{max}}} \]
 Accuracy = \(a_{1}\text{\scriptsize{\text{max}}} - a_{1}\text{\scriptsize{\text{min}}} \)
3) The bisector of the angle formed by these two lines
Architecture

Multi-core Multi-level Distributed Trace Synchronization
Network Features

1) Physical distance
2) Quality of network path
3) Network latency
4) Delays
5) Hop count
6) Network traffic
Multi-core Multi-level Distributed Trace Synchronization
Result of NS2 (1/2)

Network Traffic (Packet Count)

Total Time ($)
Result of NS2 (2/2)

<table>
<thead>
<tr>
<th>No. of Nodes</th>
<th>Total No. of Packets</th>
<th>Previous Sync. Time</th>
<th>Optimized Sync. Time</th>
<th>Saved Time (s)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1437</td>
<td>8.67</td>
<td>6.04</td>
<td>2.5</td>
<td>30 %</td>
</tr>
<tr>
<td>5</td>
<td>2098</td>
<td>13.39</td>
<td>7.94</td>
<td>5.5</td>
<td>40 %</td>
</tr>
<tr>
<td>6</td>
<td>13044</td>
<td>79.60</td>
<td>69.06</td>
<td>10.5</td>
<td>13 %</td>
</tr>
<tr>
<td>16</td>
<td>209070</td>
<td>1127.28</td>
<td>765.22</td>
<td>362.06</td>
<td>32 %</td>
</tr>
<tr>
<td>19</td>
<td>141123</td>
<td>882.43</td>
<td>588.89</td>
<td>293.54</td>
<td>33 %</td>
</tr>
<tr>
<td>21</td>
<td>173985</td>
<td>1157.051</td>
<td>921.3</td>
<td>235.75</td>
<td>20 %</td>
</tr>
</tbody>
</table>

Average
28 %
Outline

- Optimization on Offline Synchronization
 - Convex-Hull
 - Architecture
 - Results
- Online Synchronization
 - Interval based Aposteriori Synchronization
 - Sliding Window based Synchronization
 - Incremental Online Synchronization
- Conclusion
- Reference
Interval based Aposteriori Synchronization

- Incremental interval
- Save and reuse previous points
- Analysis on the whole data from the start point of tracing
- No need to repeat processing and matching of packets
Interval based Aposteriori Synchronization

• The advantage:
 • The highest level of accuracy

• The disadvantages:
 • Scalability

• Optimization:
 • Consider particular no. of previous intervals (e.g. 5 intervals)
LTTV Integration Challenges

- Add/remove new/old node at the entrance/leave time
- Gather trace files
- Synchronization delays (Network, Algorithm)
- Buffering
Sliding Window based Synchronization

- \(L \): size of window (static interval)

- Accurate packet is replaced as soon as detected
Sliding Window based Synchronization

- The advantages:
 - Guarantee high accuracy all the time
 - Improve accuracy over time
 - No buffering
Incremental Online Synchronization

• Self-Managing Method
• Optimize performance of the synchronization
• Dynamic window size
Multi-core Multi-level Distributed Trace Synchronization

Architecture

Linux Trace Toolkit Viewer (Online Sync. Part)

Gathering
- Sliding Window Manager
- Gather Stream Traces

Synchronization
- Measure Accuracy
- Synchronize

Management
- Matching Module
- Extract Dynamic Network Topology

Feedback (window size)

1
2
n
Gathering Component

• **Sliding window manager:**
 - Wide window = high accuracy & time consuming
 - Narrow window = performance & low accuracy
 - Network situation = dynamic/stable

• **Gathering Stream Traces:**
 - Network traffic load
 - Streaming latency
Management Component

• Match Packets:
 – Manage unknown received packets

• Extract Dynamic Network:
 – Extract set of nodes:
 • Communications
 – Select neighbors one by one randomly
 – Feedback network changes
Synchronization Component

• **Measure Accuracy:**
 – Balance speed and accuracy
 – Change window size

• **Synchronize**
 – Synchronize all nodes
Conclusion and Future Work

- Accurate online synchronization
- Scalable online synchronization
- Incremental online synchronization for large-scale dynamic systems
References (1)

References (2)

References (3)

References (4)

References (5)

[52] http://www.igi-global.com/bookstore/titledetails.aspx?TitleId=1123